Edit model card

music-genre-detector-finetuned-gtzan_dset

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3892
  • Accuracy: 0.8972
  • Precision: 0.8989
  • Recall: 0.8972
  • F1: 0.8974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.2319 0.98 49 1.5808 0.5263 0.5682 0.5263 0.4767
1.2682 1.98 99 0.9750 0.7556 0.7524 0.7556 0.7510
0.9462 2.99 149 0.7403 0.7945 0.7964 0.7945 0.7921
0.5946 3.99 199 0.5921 0.8233 0.8281 0.8233 0.8214
0.4095 4.99 249 0.4772 0.8634 0.8663 0.8634 0.8638
0.3349 5.99 299 0.4167 0.8835 0.8866 0.8835 0.8841
0.2427 6.88 343 0.3892 0.8972 0.8989 0.8972 0.8974

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.10.2+cu111
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
370
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pedromatias97/genre-recognizer-finetuned-gtzan_dset

Finetuned
(388)
this model
Finetunes
4 models

Evaluation results