metadata
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-mt5-small-v2
results: []
mt5-small-finetuned-mt5-small-v2
This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.3614
- Rouge1: 0.1151
- Rouge2: 0.0251
- Rougel: 0.1143
- Rougelsum: 0.1144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 16
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.5787 | 1.0 | 12500 | 2.7685 | 0.0863 | 0.0192 | 0.0858 | 0.0857 |
3.036 | 2.0 | 25000 | 2.6270 | 0.0911 | 0.0203 | 0.0905 | 0.0905 |
2.8761 | 3.0 | 37500 | 2.5564 | 0.101 | 0.0233 | 0.1004 | 0.1004 |
2.7709 | 4.0 | 50000 | 2.5080 | 0.1034 | 0.0231 | 0.1028 | 0.1028 |
2.6959 | 5.0 | 62500 | 2.4671 | 0.1068 | 0.0235 | 0.1061 | 0.1062 |
2.6328 | 6.0 | 75000 | 2.4539 | 0.11 | 0.026 | 0.1093 | 0.1093 |
2.5839 | 7.0 | 87500 | 2.4302 | 0.1101 | 0.0261 | 0.1092 | 0.1093 |
2.5418 | 8.0 | 100000 | 2.4083 | 0.1113 | 0.0252 | 0.1106 | 0.1108 |
2.5067 | 9.0 | 112500 | 2.3999 | 0.1115 | 0.0257 | 0.1107 | 0.1106 |
2.4762 | 10.0 | 125000 | 2.3857 | 0.1161 | 0.0264 | 0.1153 | 0.1153 |
2.4505 | 11.0 | 137500 | 2.3741 | 0.1141 | 0.0262 | 0.1133 | 0.1134 |
2.4281 | 12.0 | 150000 | 2.3737 | 0.1153 | 0.0259 | 0.1146 | 0.1147 |
2.4103 | 13.0 | 162500 | 2.3648 | 0.1156 | 0.0255 | 0.1148 | 0.1147 |
2.3961 | 14.0 | 175000 | 2.3652 | 0.1131 | 0.0246 | 0.1123 | 0.1123 |
2.3837 | 15.0 | 187500 | 2.3636 | 0.1141 | 0.0255 | 0.1133 | 0.1134 |
2.3772 | 16.0 | 200000 | 2.3614 | 0.1151 | 0.0251 | 0.1143 | 0.1144 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.1.0+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1