|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- gazeta |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: mt5-small-finetuned-amazon-en-es |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: gazeta |
|
type: gazeta |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 9.9348 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-finetuned-amazon-en-es |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the gazeta dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.2573 |
|
- Rouge1: 9.9348 |
|
- Rouge2: 1.4701 |
|
- Rougel: 9.7352 |
|
- Rougelsum: 9.7173 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:| |
|
| 5.0727 | 1.0 | 763 | 2.4238 | 9.9038 | 2.2835 | 9.5715 | 9.6056 | |
|
| 3.4561 | 2.0 | 1526 | 2.3779 | 10.5328 | 2.1668 | 10.297 | 10.2517 | |
|
| 3.2731 | 3.0 | 2289 | 2.3248 | 11.0603 | 2.3552 | 10.9513 | 10.9458 | |
|
| 3.1629 | 4.0 | 3052 | 2.2993 | 9.6206 | 1.553 | 9.4704 | 9.4079 | |
|
| 3.0912 | 5.0 | 3815 | 2.2779 | 9.9379 | 1.5493 | 9.7858 | 9.7129 | |
|
| 3.0449 | 6.0 | 4578 | 2.2698 | 10.1558 | 1.5231 | 9.947 | 9.8629 | |
|
| 3.0184 | 7.0 | 5341 | 2.2683 | 9.7056 | 1.5373 | 9.4965 | 9.3964 | |
|
| 2.9987 | 8.0 | 6104 | 2.2573 | 9.9348 | 1.4701 | 9.7352 | 9.7173 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.15.1 |
|
|