peulsilva's picture
Add new SentenceTransformer model
7f852f0 verified
metadata
base_model: whaleloops/phrase-bert
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:100000
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: >-
      RT @AnfieldBond: Xherdan Shaqiri, who has been linked with a summer move
      to Liverpool, has just scored a hat-trick against Honduras. #LFC
    sentences:
      - Honduras is fucking it up for ecuador
      - Some strike Shakira. Just need a couple more one from Honduras.
      - |-
        RT @2014WorIdCup: HALF TIME: France and Ecuador 0-0. 
        Switzerland leads Honduras 2-0.
  - source_sentence: Yall watching the Honduras game when im watching france😂😂 Honduras poo
    sentences:
      - >-
        I’m following Honduras versus Switzerland in the FIFA Global Stadium
        #HONSUI #worldcup #joinin
      - >-
        RT @SportsCenter: That's it for Group E! France wins group after 0-0
        tie, Switzerland advances thanks to 3-0 win. Ecuador and Honduras are …
      - >-
        RT @worldsoccershop: HAT TRICK FOR @XS_11official! #HON 0-3 #SUI.
        #WorldCup2014
  - source_sentence: >-
      RT @rffuk: Xherdan Shaqiri just scored this absolute wonder goal to put
      #SWI 1-0 ahead v #HON. What a strike son! https://t.co/vHuIPCucpV
    sentences:
      - >-
        RT @trueSCRlife: If #Shaqiri scores vs #HON we'll give away a pair of
        Magistas. Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG…
      - >-
        RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the
        chance to win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…
      - >-
        Shaqiri has 2 goals in the first half! Can he score the first hat trick
        of the #WorldCup? #HON #SUI http://t.co/M21zGv0qw4
  - source_sentence: Honduras copped the fendi
    sentences:
      - >-
        RT @worldsoccershop: If #Costly scores for #HON we'll give away a pair
        of adidas #Nitrocharge. Follow & RT to enter! #allin or nothing. htt…
      - |-
        #SUI get a second against #HON. Shaqiri scores once again!

        #iMOTM?
      - >-
        RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the
        chance to win a Joma #HON Jersey signed by the team! http://t.co/2NTfw…
  - source_sentence: >-
      Honduras is technically still in the World Cup and Italy plus England are
      out means Honduras is better than them😂
    sentences:
      - wtf Honduras has to win 😩
      - 'Honduras still better than the #CGHS JV Female Soccer Team 😂😂'
      - >-
        RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick
        in #WorldCup history as Switzerland qualify 4d next round. http://…
model-index:
  - name: SentenceTransformer based on whaleloops/phrase-bert
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: validation
          type: validation
        metrics:
          - type: pearson_cosine
            value: 0.14803022870400553
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.1536611594776976
            name: Spearman Cosine

SentenceTransformer based on whaleloops/phrase-bert

This is a sentence-transformers model finetuned from whaleloops/phrase-bert. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: whaleloops/phrase-bert
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': None}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("peulsilva/sentence-transformer-trained-tweet")
# Run inference
sentences = [
    'Honduras is technically still in the World Cup and Italy plus England are out means Honduras is better than them😂',
    'RT @iambolar: FT:Honduras 0-3 Switzerland. Shaqiri nets d 50th hat trick in #WorldCup history as Switzerland qualify 4d next round. http://…',
    'Honduras still better than the #CGHS JV Female Soccer Team 😂😂',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.148
spearman_cosine 0.1537

Training Details

Training Dataset

Unnamed Dataset

  • Size: 100,000 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 6 tokens
    • mean: 37.81 tokens
    • max: 65 tokens
    • min: 6 tokens
    • mean: 38.01 tokens
    • max: 67 tokens
    • min: 0.0
    • mean: 0.56
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    Early lead for #SUI over #HON thanks to Shaqiri taking a page out of Robben's book. He paid attention during Bayern practices. #ShaqAttaq ⚽️ RT @soccerdotcom: Los Catrachos! Follow @soccerdotcom and RT for the chance to win a Joma #HON Jersey signed by the team! http://t.co/2NTfw… 0.0
    RT @RTEsoccer: Group E result: #HON 0-3 #SUI. Shaqiri the hat-trick hero as the Swiss progress: http://t.co/fZYw9NFghO #rteworldcup http://… RT @trueSCRlife: If #Shaqiri scores vs #HON we'll give away a pair of Magistas. Follow & RT to enter. Winner DMed! #HONvsSUI http://t.co/EG… 1.0
    RT @TheSCRLife: If #HON wins we’ll give away a pair of Superflys. FOLLOW & RETWEET. Not following?Won’t win. (I’m checking). http://t.co/xw… Yup Honduras say goodbye lll 0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss validation_spearman_cosine
0.6394 500 0.2429 -
1.0 782 - 0.1537

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.3.0
  • Transformers: 4.45.0.dev0
  • PyTorch: 2.4.1+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}