GenerRNA
GenerRNA is a generative RNA language model based on a Transformer decoder-only architecture. It was pre-trained on 30M sequences, encompassing 17B nucleotides.
Here, you can find all the relevant scripts for running GenerRNA on your machine. GenerRNA enable you to generate RNA sequences in a zero-shot manner for exploring the RNA space, or to fine-tune the model using a specific dataset for generating RNAs belonging to a particular family or possessing specific characteristics.
Requirements
A CUDA environment, and a minimum VRAM of 8GB was required.
Dependencies
torch>=2.0
numpy
transformers==4.33.0.dev0
datasets==2.14.4
tqdm
Usage
Firstly, combine the split model using the command cat model.pt.part-* > model.pt.recombined
Directory tree
.
βββ LICENSE
βββ README.md
βββ configs
β βββ example_finetuning.py
β βββ example_pretraining.py
βββ experiments_data
βββ model.pt.part-aa # splited bin data of *HISTORICAL* model (shorter context window, less VRAM comsuption)
βββ model.pt.part-ab
βββ model.pt.part-ac
βββ model.pt.part-ad
βββ model_updated.pt # *NEWER* model, with longer context windows and being trained on a deduplicated dataset
βββ model.py # define the architecture
βββ sampling.py # script to generate sequences
βββ tokenization.py # preparete data
βββ tokenizer_bpe_1024
β βββ tokenizer.json
β βββ ....
βββ train.py # script for training/fine-tuning
De novo Generation in a zero-shot fashion
Usage example:
python sampling.py \
--out_path {output_file_path} \
--max_new_tokens 256 \
--ckpt_path {model.pt} \
--tokenizer_path {path_to_tokenizer_directory, e.g /tokenizer_bpe_1024}
Pre-training or Fine-tuning on your own sequences
First, tokenize your sequence data, ensuring each sequence is on a separate line and there is no header.
python tokenization.py \
--data_dir {path_to_the_directory_containing_sequence_data} \
--file_name {file_name_of_sequence_data} \
--tokenizer_path {path_to_tokenizer_directory} \
--out_dir {directory_to_save_tokenized_data} \
--block_size 256
Next, refer to ./configs/example_**.py
to create a config file of GPT model.
Lastly, excute following command:
python train.py \
--config {path_to_your_config_file}
Train your own tokenizer
Usage example:
python train_BPE.py \
--txt_file_path {path_to_training_file(txt,each sequence is on a separate line)} \
--vocab_size 50256 \
--new_tokenizer_path {directory_to_save_trained_tokenizer} \
License
The source code is licensed MIT. See LICENSE