bert-finetuned-ner / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
49a3066
|
raw
history blame
2.22 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: bert-base-cased
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: train
          args: conll2003
        metrics:
          - type: precision
            value: 0.9371173258315406
            name: Precision
          - type: recall
            value: 0.9530461124200605
            name: Recall
          - type: f1
            value: 0.945014601585315
            name: F1
          - type: accuracy
            value: 0.9865338199799847
            name: Accuracy

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0599
  • Precision: 0.9371
  • Recall: 0.9530
  • F1: 0.9450
  • Accuracy: 0.9865

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0883 1.0 1756 0.0690 0.9181 0.9320 0.9250 0.9821
0.0334 2.0 3512 0.0623 0.9279 0.9504 0.9390 0.9858
0.0189 3.0 5268 0.0599 0.9371 0.9530 0.9450 0.9865

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.0+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1