Transformers
Safetensors
bert
Inference Endpoints
philipphager's picture
Create README.md
1cb5485 verified
|
raw
history blame
3.15 kB
metadata
license: mit
datasets:
  - philipphager/baidu-ultr-pretrain
  - philipphager/baidu-ultr_uva-mlm-ctr
metrics:
  - log-likelihood
  - dcg@1
  - dcg@3
  - dcg@5
  - dcg@10
  - ndcg@10
  - mrr@10

Pointwise MonoBERT trained on Baidu-ULTR with Inverse Propensity Scoring (IPS)

A flax-based MonoBERT cross encoder trained on the Baidu-ULTR dataset with the pointwise sigmoid cross-entropy loss with IPS correction suggested by Bekker et al. and Saito et al.. The loss uses inverse propensity scoring to mitigate position bias in click data by weighting clicks on items higher that are less likely to be observed by users. For more info, read our paper and find the code for this model here.

Test Results on Baidu-ULTR Expert Annotations

Usage

Here is an example of downloading the model and calling it for inference on a mock batch of input data. For more details on how to use the model on the Baidu-ULTR dataset, take a look at our training and evaluation scripts in our code repository.

import jax.numpy as jnp

from src.model import IPSCrossEncoder

model = IPSCrossEncoder.from_pretrained(
    "philipphager/baidu-ultr_uva-bert_ips-pointwise",
)

# Mock batch following Baidu-ULTR with 4 documents, each with 8 tokens
batch = {
    # Query_id for each document
    "query_id": jnp.array([1, 1, 1, 1]),
    # Document position in SERP
    "positions": jnp.array([1, 2, 3, 4]),
    # Token ids for: [CLS] Query [SEP] Document
    "tokens": jnp.array([
        [2, 21448, 21874, 21436, 1, 20206, 4012, 2860],
        [2, 21448, 21874, 21436, 1, 16794, 4522, 2082],
        [2, 21448, 21874, 21436, 1, 20206, 10082, 9773],
        [2, 21448, 21874, 21436, 1, 2618, 8520, 2860],
  ]),
    # Specify if a token id belongs to the query (0) or document (1)
    "token_types": jnp.array([
        [0, 0, 0, 0, 1, 1, 1, 1],
        [0, 0, 0, 0, 1, 1, 1, 1],
        [0, 0, 0, 0, 1, 1, 1, 1],
        [0, 0, 0, 0, 1, 1, 1, 1],
    ]),
    # Marks if a token should be attended to (True) or ignored, e.g., padding tokens (False):
    "attention_mask": jnp.array([
        [True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True],
    ]),
}

outputs = model(batch, train=False)
print(outputs)

Reference

@inproceedings{Hager2024BaiduULTR,
  author = {Philipp Hager and Romain Deffayet and Jean-Michel Renders and Onno Zoeter and Maarten de Rijke},
  title = {Unbiased Learning to Rank Meets Reality: Lessons from Baidu’s Large-Scale Search Dataset},
  booktitle = {Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`24)},
  organization = {ACM},
  year = {2024},
}