|
--- |
|
license: mit |
|
datasets: |
|
- philipphager/baidu-ultr-pretrain |
|
- philipphager/baidu-ultr_uva-mlm-ctr |
|
metrics: |
|
- dcg@1 |
|
- dcg@3 |
|
- dcg@5 |
|
- dcg@10 |
|
- ndcg@10 |
|
- mrr@10 |
|
--- |
|
|
|
# Naive Listwise MonoBERT trained on Baidu-ULTR |
|
A flax-based MonoBERT cross encoder trained on the [Baidu-ULTR](https://arxiv.org/abs/2207.03051) dataset with a **listwise softmax cross-entropy loss on clicks**. The loss is called "naive" as we use user clicks as a signal of relevance without any additional position bias correction. For more info, [read our paper](https://arxiv.org/abs/2404.02543) and [find the code for this model here](https://github.com/philipphager/baidu-bert-model). |
|
|
|
## Test Results on Baidu-ULTR Expert Annotations |
|
|
|
| Model | log-likelihood | DCG@1 | DCG@3 | DCG@5 | DCG@10 | nDCG@10 | MRR@10 | |
|
|---------------------|----------------|--------|--------|--------|--------|---------|--------| |
|
| Naive Pointwise | 0.2272 | 1.6836 | 3.5616 | 4.8822 | 7.4244 | 0.3640 | 0.6096 | |
|
| **Naive Listwise** | - | 1.9738 | 4.1609 | 5.6861 | 8.5432 | 0.4091 | 0.6436 | |
|
|
|
## Usage |
|
Here is an example with a mock input batch for how to download and call the model: |
|
|
|
```Python |
|
import jax.numpy as jnp |
|
|
|
from src.model import ListwiseCrossEncoder |
|
|
|
model = ListwiseCrossEncoder.from_pretrained( |
|
"philipphager/baidu-ultr_uva-bert_naive-listwise", |
|
) |
|
|
|
# Mock batch following Baidu-ULTR with 4 documents, each with 8 tokens |
|
batch = { |
|
# Query_id for each document |
|
"query_id": jnp.array([1, 1, 1, 1]), |
|
# Document position in SERP |
|
"positions": jnp.array([1, 2, 3, 4]), |
|
# Token ids for: [CLS] Query [SEP] Document |
|
"tokens": jnp.array([ |
|
[2, 21448, 21874, 21436, 1, 20206, 4012, 2860], |
|
[2, 21448, 21874, 21436, 1, 16794, 4522, 2082], |
|
[2, 21448, 21874, 21436, 1, 20206, 10082, 9773], |
|
[2, 21448, 21874, 21436, 1, 2618, 8520, 2860], |
|
]), |
|
# Specify if a token id belongs to the query (0) or document (1) |
|
"token_types": jnp.array([ |
|
[0, 0, 0, 0, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 1, 1, 1, 1], |
|
[0, 0, 0, 0, 1, 1, 1, 1], |
|
]), |
|
# Marks if a token should be attended to (True) or ignored, e.g., padding tokens (False): |
|
"attention_mask": jnp.array([ |
|
[True, True, True, True, True, True, True, True], |
|
[True, True, True, True, True, True, True, True], |
|
[True, True, True, True, True, True, True, True], |
|
[True, True, True, True, True, True, True, True], |
|
]), |
|
} |
|
|
|
outputs = model(batch) |
|
print(outputs) |
|
``` |
|
|
|
For more details on how to use the model with real data from Baidu-ULTR, take a look at the [evaluation script of our model repository](https://github.com/philipphager/baidu-bert-model/blob/main/eval.py). |
|
|
|
## Reference |
|
``` |
|
@inproceedings{Hager2024BaiduULTR, |
|
author = {Philipp Hager and Romain Deffayet and Jean-Michel Renders and Onno Zoeter and Maarten de Rijke}, |
|
title = {Unbiased Learning to Rank Meets Reality: Lessons from Baidu’s Large-Scale Search Dataset}, |
|
booktitle = {Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR`24)}, |
|
organization = {ACM}, |
|
year = {2024}, |
|
} |
|
``` |
|
|
|
|