autoevaluator's picture
Add evaluation results on the 3.0.0 config and test split of cnn_dailymail
21deab1
|
raw
history blame
7.93 kB
metadata
language: en
license: mit
tags:
  - sagemaker
  - bart
  - summarization
datasets:
  - samsum
widget:
  - text: >
      Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 

      Philipp: Sure you can use the new Hugging Face Deep Learning Container. 

      Jeff: ok.

      Jeff: and how can I get started? 

      Jeff: where can I find documentation? 

      Philipp: ok, ok you can find everything here.
      https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
model-index:
  - name: bart-large-cnn-samsum
    results:
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: >-
            SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
            Summarization
          type: samsum
        metrics:
          - type: rogue-1
            value: 42.621
            name: Validation ROGUE-1
          - type: rogue-2
            value: 21.9825
            name: Validation ROGUE-2
          - type: rogue-l
            value: 33.034
            name: Validation ROGUE-L
          - type: rogue-1
            value: 41.3174
            name: Test ROGUE-1
          - type: rogue-2
            value: 20.8716
            name: Test ROGUE-2
          - type: rogue-l
            value: 32.1337
            name: Test ROGUE-L
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: test
        metrics:
          - type: rouge
            value: 41.3282
            name: ROUGE-1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTYzNzZkZDUzOWQzNGYxYTJhNGE4YWYyZjA0NzMyOWUzMDNhMmVhYzY1YTM0ZTJhYjliNGE4MDZhMjhhYjRkYSIsInZlcnNpb24iOjF9.OOM6l3v5rJCndmUIJV-2SDh2NjbPo5IgQOSL-Ju1Gwbi1voL5amsDEDOelaqlUBE3n55KkUsMLZhyn66yWxZBQ
          - type: rouge
            value: 20.8755
            name: ROUGE-2
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZiODFiYWQzY2NmOTc5YjA3NTI0YzQ1MzQ0ODk2NjgyMmVlMjA5MjZiNTJkMGRmZGEzN2M3MDNkMjkxMDVhYSIsInZlcnNpb24iOjF9.b8cPk2-IL24La3Vd0hhtii4tRXujh5urAwy6IVeTWHwYfXaURyC2CcQOWtlOx5bdO5KACeaJFrFBCGgjk-VGCQ
          - type: rouge
            value: 32.1353
            name: ROUGE-L
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWNmYzdiYWQ2ZWRkYzRiMGMxNWUwODgwZTdkY2NjZTc1NWE5NTFiMzU0OTU1N2JjN2ExYWQ2NGZkNjk5OTc4YSIsInZlcnNpb24iOjF9.Fzv4p-TEVicljiCqsBJHK1GsnE_AwGqamVmxTPI0WBNSIhZEhliRGmIL_z1pDq6WOzv3GN2YUGvhowU7GxnyAQ
          - type: rouge
            value: 38.401
            name: ROUGE-LSUM
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4MWY0NWMxMmQ0ODQ5MDhiNDczMDAzYzJkODBiMzgzYWNkMWM2YTZkZDJmNWJiOGQ3MmNjMGViN2UzYWI2ZSIsInZlcnNpb24iOjF9.7lw3h5k5lJ7tYFLZGUtLyDabFYd00l6ByhmvkW4fykocBy9Blyin4tdw4Xps4DW-pmrdMLgidHxBWz5MrSx1Bw
          - type: loss
            value: 1.4297215938568115
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI0ZWNhNDM5YTViZDMyZGJjMDA1ZWFjYzNhOTdlOTFiNzhhMDBjNmM2MjA3ZmRkZjJjMjEyMGY3MzcwOTI2NyIsInZlcnNpb24iOjF9.oNaZsAtUDqGAqoZWJavlcW7PKx1AWsnkbhaQxadpOKk_u7ywJJabvTtzyx_DwEgZslgDETCf4MM-JKitZKjiDA
          - type: gen_len
            value: 60.0757
            name: gen_len
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWYwMDRkNTJkMDM5N2I2MWNmYzQ3OWM1NDJmODUyZGViMGE4ZTdkNmIwYWM2N2VjZDNmN2RiMDE4YTYyYiIsInZlcnNpb24iOjF9.PbXTcNYX_SW-BuRQEcqyc21M7uKrOMbffQSAK6k2GLzTVRrzZxsDC57ktKL68zRY8fSiRGsnknOwv-nAR6YBCQ
      - task:
          type: summarization
          name: Summarization
        dataset:
          name: cnn_dailymail
          type: cnn_dailymail
          config: 3.0.0
          split: test
        metrics:
          - type: rouge
            value: 43.3317
            name: ROUGE-1
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE1OTJlNGVhMWYzMDE5NmFlOTViMzdjMWIyZThlYmFhNjlkMDdlMjE2YjgyNTNkOTcyMTc4OGZhNWZkMzhiOCIsInZlcnNpb24iOjF9._SJj49w8YQsBa-xYXv5s2PnLjipivKoiT_IuvpXRJBwbCftGF2m2vCVmRIBLr_90NlNeZwh1ZCz4FwOe2RpQCA
          - type: rouge
            value: 19.9243
            name: ROUGE-2
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTcxMjg1OThmOWMzZjhiOThiNTNlMGU2NDU5MDQ5MzllMmFjYzI2OGYyN2FiNDAyYmRhMzUwZTBmNDk0ZDU0OSIsInZlcnNpb24iOjF9.ZyP_lLjx3NSZFBfSd-fWcK5JMCcqZiA5yUTNzbsM6XAOeycMYprNZ34821PB0GLmBc98nil_dgDzB3SXYEjNAA
          - type: rouge
            value: 29.6654
            name: ROUGE-L
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMyZGVmNTNlZGYwMjIyMTU2MTFkOGU3ZmRjYmMyMTczYmExNTVlZDc5ZDExMjQxN2VhNWZmNGNhOGQ1NGNkZCIsInZlcnNpb24iOjF9.FWFqThvZu18iQnClReDiirSivAunuSdVXxW4cNZw50uEJGkTQk2hBI6DkazQ0vFAQrzZk3Jutx03b4ilMjv2AA
          - type: rouge
            value: 40.2115
            name: ROUGE-LSUM
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzEyOTVhMTU3NjA0Mjk5ZWRjMTk3YTcwMjBjNmFjMTI1ZjFhZDljY2UwNzhiZjJiYzEyYmM1YjI3MDg4YmNlMSIsInZlcnNpb24iOjF9.8hqQet_2qF--YTzh6JDZqru2ye9lAtOWVOHA_QyCcxOswb52PZVUV89gaAwltML137nb5RF2gGKHLOUE5hctDA
          - type: loss
            value: 2.9701931476593018
            name: loss
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk4YzMzOWYwYTZlZmU4ZDcyYzBlZWM4ZWZlODU4YWUwOGQ4NWYyODVhYTMwMGUyNDhjNTkyODAwMjgxNDhmZiIsInZlcnNpb24iOjF9.ZTVL8gUVBU42M_sO8wJjIa7taBgotk5PhFfmN6T23vropZyp_gjazYjVNrWDU1eRO0unonfphPdkOHwyqXygAw
          - type: gen_len
            value: 83.6076
            name: gen_len
            verified: true
            verifyToken: >-
              eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTRmMWFjNGJlYWNhOTgzZTY1MDQ4MGIwYWM1ZGNiYTExZTc2ODlkNjZmZWRmZWJlMmY3YjNhMzU1ZjZkZjdiNSIsInZlcnNpb24iOjF9.Mlc1c9wpqt-AJIDz9WpdOASzXNlJHqJebCAXQznjOVTG1Bi8p5N-GOzqCUl93jVqyWWIMV9AVFBmQKoah5SIAg

bart-large-cnn-samsum

If you want to use the model you should try a newer fine-tuned FLAN-T5 version philschmid/flan-t5-base-samsum out socring the BART version with +6 on ROGUE1 achieving 47.24.

TRY philschmid/flan-t5-base-samsum

This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.

For more information look at:

Hyperparameters

{
    "dataset_name": "samsum",
    "do_eval": true,
    "do_predict": true,
    "do_train": true,
    "fp16": true,
    "learning_rate": 5e-05,
    "model_name_or_path": "facebook/bart-large-cnn",
    "num_train_epochs": 3,
    "output_dir": "/opt/ml/model",
    "per_device_eval_batch_size": 4,
    "per_device_train_batch_size": 4,
    "predict_with_generate": true,
    "seed": 7
}

Usage

from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")

conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker? 
Philipp: Sure you can use the new Hugging Face Deep Learning Container. 
Jeff: ok.
Jeff: and how can I get started? 
Jeff: where can I find documentation? 
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face                                           
'''
summarizer(conversation)

Results

key value
eval_rouge1 42.621
eval_rouge2 21.9825
eval_rougeL 33.034
eval_rougeLsum 39.6783
test_rouge1 41.3174
test_rouge2 20.8716
test_rougeL 32.1337
test_rougeLsum 38.4149