autoevaluator
HF staff
Add evaluation results on the 3.0.0 config and test split of cnn_dailymail
21deab1
metadata
language: en
license: mit
tags:
- sagemaker
- bart
- summarization
datasets:
- samsum
widget:
- text: >
Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here.
https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
model-index:
- name: bart-large-cnn-samsum
results:
- task:
type: summarization
name: Summarization
dataset:
name: >-
SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive
Summarization
type: samsum
metrics:
- type: rogue-1
value: 42.621
name: Validation ROGUE-1
- type: rogue-2
value: 21.9825
name: Validation ROGUE-2
- type: rogue-l
value: 33.034
name: Validation ROGUE-L
- type: rogue-1
value: 41.3174
name: Test ROGUE-1
- type: rogue-2
value: 20.8716
name: Test ROGUE-2
- type: rogue-l
value: 32.1337
name: Test ROGUE-L
- task:
type: summarization
name: Summarization
dataset:
name: samsum
type: samsum
config: samsum
split: test
metrics:
- type: rouge
value: 41.3282
name: ROUGE-1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTYzNzZkZDUzOWQzNGYxYTJhNGE4YWYyZjA0NzMyOWUzMDNhMmVhYzY1YTM0ZTJhYjliNGE4MDZhMjhhYjRkYSIsInZlcnNpb24iOjF9.OOM6l3v5rJCndmUIJV-2SDh2NjbPo5IgQOSL-Ju1Gwbi1voL5amsDEDOelaqlUBE3n55KkUsMLZhyn66yWxZBQ
- type: rouge
value: 20.8755
name: ROUGE-2
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWZiODFiYWQzY2NmOTc5YjA3NTI0YzQ1MzQ0ODk2NjgyMmVlMjA5MjZiNTJkMGRmZGEzN2M3MDNkMjkxMDVhYSIsInZlcnNpb24iOjF9.b8cPk2-IL24La3Vd0hhtii4tRXujh5urAwy6IVeTWHwYfXaURyC2CcQOWtlOx5bdO5KACeaJFrFBCGgjk-VGCQ
- type: rouge
value: 32.1353
name: ROUGE-L
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWNmYzdiYWQ2ZWRkYzRiMGMxNWUwODgwZTdkY2NjZTc1NWE5NTFiMzU0OTU1N2JjN2ExYWQ2NGZkNjk5OTc4YSIsInZlcnNpb24iOjF9.Fzv4p-TEVicljiCqsBJHK1GsnE_AwGqamVmxTPI0WBNSIhZEhliRGmIL_z1pDq6WOzv3GN2YUGvhowU7GxnyAQ
- type: rouge
value: 38.401
name: ROUGE-LSUM
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGI4MWY0NWMxMmQ0ODQ5MDhiNDczMDAzYzJkODBiMzgzYWNkMWM2YTZkZDJmNWJiOGQ3MmNjMGViN2UzYWI2ZSIsInZlcnNpb24iOjF9.7lw3h5k5lJ7tYFLZGUtLyDabFYd00l6ByhmvkW4fykocBy9Blyin4tdw4Xps4DW-pmrdMLgidHxBWz5MrSx1Bw
- type: loss
value: 1.4297215938568115
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzI0ZWNhNDM5YTViZDMyZGJjMDA1ZWFjYzNhOTdlOTFiNzhhMDBjNmM2MjA3ZmRkZjJjMjEyMGY3MzcwOTI2NyIsInZlcnNpb24iOjF9.oNaZsAtUDqGAqoZWJavlcW7PKx1AWsnkbhaQxadpOKk_u7ywJJabvTtzyx_DwEgZslgDETCf4MM-JKitZKjiDA
- type: gen_len
value: 60.0757
name: gen_len
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTgwYWYwMDRkNTJkMDM5N2I2MWNmYzQ3OWM1NDJmODUyZGViMGE4ZTdkNmIwYWM2N2VjZDNmN2RiMDE4YTYyYiIsInZlcnNpb24iOjF9.PbXTcNYX_SW-BuRQEcqyc21M7uKrOMbffQSAK6k2GLzTVRrzZxsDC57ktKL68zRY8fSiRGsnknOwv-nAR6YBCQ
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
metrics:
- type: rouge
value: 43.3317
name: ROUGE-1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmE1OTJlNGVhMWYzMDE5NmFlOTViMzdjMWIyZThlYmFhNjlkMDdlMjE2YjgyNTNkOTcyMTc4OGZhNWZkMzhiOCIsInZlcnNpb24iOjF9._SJj49w8YQsBa-xYXv5s2PnLjipivKoiT_IuvpXRJBwbCftGF2m2vCVmRIBLr_90NlNeZwh1ZCz4FwOe2RpQCA
- type: rouge
value: 19.9243
name: ROUGE-2
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTcxMjg1OThmOWMzZjhiOThiNTNlMGU2NDU5MDQ5MzllMmFjYzI2OGYyN2FiNDAyYmRhMzUwZTBmNDk0ZDU0OSIsInZlcnNpb24iOjF9.ZyP_lLjx3NSZFBfSd-fWcK5JMCcqZiA5yUTNzbsM6XAOeycMYprNZ34821PB0GLmBc98nil_dgDzB3SXYEjNAA
- type: rouge
value: 29.6654
name: ROUGE-L
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWMyZGVmNTNlZGYwMjIyMTU2MTFkOGU3ZmRjYmMyMTczYmExNTVlZDc5ZDExMjQxN2VhNWZmNGNhOGQ1NGNkZCIsInZlcnNpb24iOjF9.FWFqThvZu18iQnClReDiirSivAunuSdVXxW4cNZw50uEJGkTQk2hBI6DkazQ0vFAQrzZk3Jutx03b4ilMjv2AA
- type: rouge
value: 40.2115
name: ROUGE-LSUM
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzEyOTVhMTU3NjA0Mjk5ZWRjMTk3YTcwMjBjNmFjMTI1ZjFhZDljY2UwNzhiZjJiYzEyYmM1YjI3MDg4YmNlMSIsInZlcnNpb24iOjF9.8hqQet_2qF--YTzh6JDZqru2ye9lAtOWVOHA_QyCcxOswb52PZVUV89gaAwltML137nb5RF2gGKHLOUE5hctDA
- type: loss
value: 2.9701931476593018
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTk4YzMzOWYwYTZlZmU4ZDcyYzBlZWM4ZWZlODU4YWUwOGQ4NWYyODVhYTMwMGUyNDhjNTkyODAwMjgxNDhmZiIsInZlcnNpb24iOjF9.ZTVL8gUVBU42M_sO8wJjIa7taBgotk5PhFfmN6T23vropZyp_gjazYjVNrWDU1eRO0unonfphPdkOHwyqXygAw
- type: gen_len
value: 83.6076
name: gen_len
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTRmMWFjNGJlYWNhOTgzZTY1MDQ4MGIwYWM1ZGNiYTExZTc2ODlkNjZmZWRmZWJlMmY3YjNhMzU1ZjZkZjdiNSIsInZlcnNpb24iOjF9.Mlc1c9wpqt-AJIDz9WpdOASzXNlJHqJebCAXQznjOVTG1Bi8p5N-GOzqCUl93jVqyWWIMV9AVFBmQKoah5SIAg
bart-large-cnn-samsum
If you want to use the model you should try a newer fine-tuned FLAN-T5 version philschmid/flan-t5-base-samsum out socring the BART version with
+6
onROGUE1
achieving47.24
.
TRY philschmid/flan-t5-base-samsum
This model was trained using Amazon SageMaker and the new Hugging Face Deep Learning container.
For more information look at:
- 🤗 Transformers Documentation: Amazon SageMaker
- Example Notebooks
- Amazon SageMaker documentation for Hugging Face
- Python SDK SageMaker documentation for Hugging Face
- Deep Learning Container
Hyperparameters
{
"dataset_name": "samsum",
"do_eval": true,
"do_predict": true,
"do_train": true,
"fp16": true,
"learning_rate": 5e-05,
"model_name_or_path": "facebook/bart-large-cnn",
"num_train_epochs": 3,
"output_dir": "/opt/ml/model",
"per_device_eval_batch_size": 4,
"per_device_train_batch_size": 4,
"predict_with_generate": true,
"seed": 7
}
Usage
from transformers import pipeline
summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
conversation = '''Jeff: Can I train a 🤗 Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face
'''
summarizer(conversation)
Results
key | value |
---|---|
eval_rouge1 | 42.621 |
eval_rouge2 | 21.9825 |
eval_rougeL | 33.034 |
eval_rougeLsum | 39.6783 |
test_rouge1 | 41.3174 |
test_rouge2 | 20.8716 |
test_rougeL | 32.1337 |
test_rougeLsum | 38.4149 |