|
--- |
|
inference: false |
|
license: cc-by-4.0 |
|
--- |
|
|
|
# Model Card |
|
|
|
<p align="center"> |
|
<img src="./icon.png" alt="Logo" width="350"> |
|
</p> |
|
|
|
This is Owlet-Phi-2. |
|
|
|
Owlet is a family of lightweight but powerful multimodal models. |
|
|
|
We provide Owlet-phi-2, which is built upon [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) and [Phi-2](https://huggingface.co/microsoft/phi-2). |
|
|
|
|
|
# Quickstart |
|
|
|
Here we show a code snippet to show you how to use the model with transformers. |
|
|
|
Before running the snippet, you need to install the following dependencies: |
|
|
|
```shell |
|
pip install torch transformers accelerate pillow decord |
|
``` |
|
|
|
```python |
|
import torch |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from PIL import Image |
|
import warnings |
|
|
|
|
|
# disable some warnings |
|
transformers.logging.set_verbosity_error() |
|
transformers.logging.disable_progress_bar() |
|
warnings.filterwarnings('ignore') |
|
|
|
# set device |
|
device = 'cuda' # or cpu |
|
torch.set_default_device(device) |
|
|
|
# create model |
|
print('Loading the model...') |
|
model = AutoModelForCausalLM.from_pretrained( |
|
'phronetic-ai/owlet-phi-2', |
|
torch_dtype=torch.float16, # float32 for cpu |
|
device_map='auto', |
|
trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
'phronetic-ai/owlet-phi-2', |
|
trust_remote_code=True) |
|
|
|
print('Model loaded. Processing the query...') |
|
# text prompt |
|
prompt = 'What is happening in the video?' |
|
text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" |
|
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] |
|
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0).to(device) |
|
|
|
# image or video file path |
|
file_path = 'sample.mp4' |
|
input_tensor = model.process(file_path, model.config).to(model.device, dtype=model.dtype) |
|
|
|
# generate |
|
output_ids = model.generate( |
|
input_ids, |
|
images=input_tensor, |
|
max_new_tokens=100, |
|
use_cache=True)[0] |
|
|
|
print(f'Response: {tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()}') |
|
|
|
``` |