pinot's picture
End of training
440d54f
metadata
license: apache-2.0
base_model: facebook/wav2vec2-conformer-rel-pos-large
tags:
  - generated_from_trainer
datasets:
  - common_voice_13_0
metrics:
  - wer
model-index:
  - name: wav2vec2-conformer-large-cv13
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: ja
          split: test[:10%]
          args: ja
        metrics:
          - name: Wer
            type: wer
            value: 0.961053330382828

wav2vec2-conformer-large-cv13

This model is a fine-tuned version of facebook/wav2vec2-conformer-rel-pos-large on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 5.3295
  • Wer: 0.9611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.4756 1.0 715 5.7619 1.0
5.6554 2.0 1430 5.7260 1.0
5.4654 3.0 2146 5.5588 0.9993
5.421 4.0 2861 5.5970 0.9918
5.3141 5.0 3577 5.4359 0.9794
5.2603 6.0 4292 5.4187 0.9792
5.1834 7.0 5008 5.3865 0.9785
5.1195 8.0 5723 5.3875 0.9661
5.0788 9.0 6438 5.3399 0.9668
4.9988 9.99 7150 5.3295 0.9611

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0