pinot's picture
First model version
0c849e6
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-1b-ja-phoneme_cv_14_2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train[:50%]
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.06680282124961409

wav2vec2-xls-r-1b-ja-phoneme_cv_14_2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2898
  • Wer: 0.0668

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Wer
1.0171 0.49 2000 0.3758 0.0890
0.3467 0.98 4000 0.2898 0.0668

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.3
  • Tokenizers 0.13.3