stablelm-2-1.6-dpo-disticoder-v0.1
This model is a fine-tuned version of plaguss/stablelm-2-1_6-sft-disticoder-v01 on the argilla/DistiCoder-dpo-binarized-train dataset. It achieves the following results on the evaluation set:
- Loss: 0.7398
- Rewards/chosen: -0.0026
- Rewards/rejected: -0.0002
- Rewards/accuracies: 0.4902
- Rewards/margins: -0.0024
- Logps/rejected: -359.7791
- Logps/chosen: -297.9016
- Logits/rejected: -0.9458
- Logits/chosen: -0.9673
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.7397 | 1.0 | 288 | 0.7419 | -0.0098 | -0.0101 | 0.5 | 0.0003 | -359.7990 | -297.9159 | -0.9478 | -0.9696 |
0.718 | 2.0 | 576 | 0.7291 | 0.0095 | -0.0100 | 0.5117 | 0.0194 | -359.7986 | -297.8773 | -0.9464 | -0.9679 |
0.6923 | 3.0 | 864 | 0.7398 | -0.0026 | -0.0002 | 0.4902 | -0.0024 | -359.7791 | -297.9016 | -0.9458 | -0.9673 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.1.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.2
- Downloads last month
- 4
Model tree for plaguss/stablelm-2-1.6-dpo-disticoder-v0.1
Base model
stabilityai/stablelm-2-1_6b