pradanaadn's picture
End of training
7f5c5f1 verified
metadata
license: apache-2.0
base_model: pradanaadn/vit-emotional-classifier
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-emotional-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.65625

vit-emotional-classifier

This model is a fine-tuned version of pradanaadn/vit-emotional-classifier on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1495
  • Accuracy: 0.6562

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4801 0.5 20 1.2238 0.5875
0.4681 1.0 40 1.2062 0.6188
0.3414 1.5 60 1.1674 0.6
0.2972 2.0 80 1.1362 0.6125
0.2503 2.5 100 1.1508 0.6
0.1872 3.0 120 1.1495 0.6562
0.1929 3.5 140 1.1998 0.5875
0.1883 4.0 160 1.2023 0.5938
0.1729 4.5 180 1.2130 0.6
0.2007 5.0 200 1.2021 0.5813

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1