prathameshdalal's picture
Update README.md
b63477f
metadata
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: vivit-b-16x2-kinetics400-UCF-Crime
    results: []

vivit-b-16x2-kinetics400-UCF-Crime

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on UCF-Crime dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9757
  • Accuracy: 0.6149

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 3132

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2072 0.06 196 1.6400 0.5518
1.5513 1.06 392 1.4988 0.5634
1.1038 2.06 588 1.5328 0.5861
0.9462 3.06 784 1.3932 0.6178
0.7387 4.06 980 1.5449 0.6060
0.5085 5.06 1176 1.3075 0.6287
0.4443 6.06 1372 1.6743 0.6001
0.4695 7.06 1568 1.5287 0.6172
0.4409 8.06 1764 1.7749 0.6089
0.1158 9.06 1960 1.9027 0.6076
0.1183 10.06 2156 1.9622 0.6085
0.1322 11.06 2352 2.0872 0.6152
0.1881 12.06 2548 2.0095 0.6094
0.0932 13.06 2744 1.9398 0.6232
0.0303 14.06 2940 1.9994 0.6134
0.0513 15.06 3132 1.9757 0.6149

Framework versions

  • Transformers 4.33.2
  • Pytorch 1.10.0+cu113
  • Datasets 2.14.5
  • Tokenizers 0.13.3