Edit model card

annoctr_bert_uncased

This model is a fine-tuned version of bert-base-uncased on the anno_ctr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3322
  • Precision: 0.7928
  • Recall: 0.7810
  • F1: 0.7869
  • Accuracy: 0.9365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.54 1.0 474 0.3452 0.6983 0.6601 0.6786 0.9137
0.3013 2.0 948 0.3466 0.7774 0.7018 0.7376 0.9240
0.0392 3.0 1422 0.3071 0.7851 0.7517 0.7680 0.9303
0.5695 4.0 1896 0.2941 0.7810 0.7617 0.7712 0.9334
0.0021 5.0 2370 0.3109 0.7928 0.7720 0.7823 0.9351
0.0419 6.0 2844 0.3020 0.7772 0.7796 0.7784 0.9341
0.2979 7.0 3318 0.3169 0.8019 0.7814 0.7915 0.9374
0.0017 8.0 3792 0.3260 0.7972 0.7778 0.7874 0.9365
0.0166 9.0 4266 0.3349 0.7935 0.7789 0.7861 0.9364
0.0685 10.0 4740 0.3322 0.7928 0.7810 0.7869 0.9365

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for priamai/annoctr_bert_uncased

Finetuned
(2026)
this model

Evaluation results