include sample code to run the model in readme
#14
by
oddlyspaced
- opened
README.md
CHANGED
@@ -49,6 +49,36 @@ We evaluate on an extensive set of downstream tasks including reasoning, reading
|
|
49 |
| Open-LLaMA-3B-v2 | 1T | 55.7 |
|
50 |
| Sheared-LLaMA-2.7B | 50B | 56.7 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
## Bibtex
|
53 |
```
|
54 |
@article{xia2023sheared,
|
|
|
49 |
| Open-LLaMA-3B-v2 | 1T | 55.7 |
|
50 |
| Sheared-LLaMA-2.7B | 50B | 56.7 |
|
51 |
|
52 |
+
## Code Sample using transformers library
|
53 |
+
|
54 |
+
```
|
55 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
56 |
+
|
57 |
+
# Load model and tokenizer
|
58 |
+
model = "Sheared-LLaMA-1.3B/" # Replace with the actual path
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
60 |
+
model = AutoModelForCausalLM.from_pretrained(model)
|
61 |
+
|
62 |
+
# Input prompt
|
63 |
+
input_text = "Once upon a time"
|
64 |
+
input_ids = tokenizer.encode(input_text, return_tensors='pt')
|
65 |
+
|
66 |
+
# Generate text
|
67 |
+
output = model.generate(
|
68 |
+
input_ids,
|
69 |
+
max_length=100,
|
70 |
+
num_return_sequences=1,
|
71 |
+
no_repeat_ngram_size=2,
|
72 |
+
temperature=0.7,
|
73 |
+
top_p=0.9,
|
74 |
+
do_sample=True
|
75 |
+
)
|
76 |
+
|
77 |
+
# Decode and print the generated text
|
78 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
+
print(generated_text)
|
80 |
+
```
|
81 |
+
|
82 |
## Bibtex
|
83 |
```
|
84 |
@article{xia2023sheared,
|