PubMedBert-PubMed200kRCT
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the PubMed200kRCT dataset. It achieves the following results on the evaluation set:
- Loss: 0.2833
- Accuracy: 0.8942
Model description
More information needed
Intended uses & limitations
The model can be used for text classification tasks of Randomized Controlled Trials that does not have any structure. The text can be classified as one of the following:
- BACKGROUND
- CONCLUSIONS
- METHODS
- OBJECTIVE
- RESULTS
The model can be directly used like this:
from transformers import TextClassificationPipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT")
tokenizer = AutoTokenizer.from_pretrained("pritamdeka/PubMedBert-PubMed200kRCT")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
pipe("Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity.")
Results will be shown as follows:
[[{'label': 'BACKGROUND', 'score': 0.0028450002428144217},
{'label': 'CONCLUSIONS', 'score': 0.2581048607826233},
{'label': 'METHODS', 'score': 0.015086210332810879},
{'label': 'OBJECTIVE', 'score': 0.0016815993003547192},
{'label': 'RESULTS', 'score': 0.7222822904586792}]]
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.3604 | 0.14 | 5000 | 0.3162 | 0.8821 |
0.3326 | 0.29 | 10000 | 0.3112 | 0.8843 |
0.3293 | 0.43 | 15000 | 0.3044 | 0.8870 |
0.3246 | 0.58 | 20000 | 0.3040 | 0.8871 |
0.32 | 0.72 | 25000 | 0.2969 | 0.8888 |
0.3143 | 0.87 | 30000 | 0.2929 | 0.8903 |
0.3095 | 1.01 | 35000 | 0.2917 | 0.8899 |
0.2844 | 1.16 | 40000 | 0.2957 | 0.8886 |
0.2778 | 1.3 | 45000 | 0.2943 | 0.8906 |
0.2779 | 1.45 | 50000 | 0.2890 | 0.8935 |
0.2752 | 1.59 | 55000 | 0.2881 | 0.8919 |
0.2736 | 1.74 | 60000 | 0.2835 | 0.8944 |
0.2725 | 1.88 | 65000 | 0.2833 | 0.8942 |
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.6
Citing & Authors
- Downloads last month
- 27
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.