Edit model card

PubMedBert-abstract-cord19-v2

This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the pritamdeka/cord-19-abstract dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2371
  • Accuracy: 0.7247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • num_epochs: 4.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.27 0.53 5000 1.2425 0.7236
1.2634 1.06 10000 1.3123 0.7141
1.3041 1.59 15000 1.3583 0.7072
1.3829 2.12 20000 1.3590 0.7121
1.3069 2.65 25000 1.3506 0.7154
1.2921 3.18 30000 1.3448 0.7160
1.2731 3.7 35000 1.3375 0.7178

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pritamdeka/PubMedBert-abstract-cord19-v2

Dataset used to train pritamdeka/PubMedBert-abstract-cord19-v2

Evaluation results