metadata
base_model: distilbert/distilbert-base-multilingual-cased
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:654495
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
সম্পূৰ্ণৰূপে ভিন্ন ধৰণৰ পেৰাচুট আৰু এটা উড়ন্ত পক্ষীৰ মাজত, আহ্, শব্দৰ
তিনিগুণ বেগত, ঘণ্টাৰ ২২, ০০০ মাইলত।
sentences:
- ঘণ্টাৰ ২০, ০০০ কিলোমিটাৰতকৈ অধিক গতিত উড়ে।
- মোৰ ঘৰত দুটা কম্পিউটাৰ আছে।
- >-
সকলো ক্ৰীড়াৰ নাম ক্ৰীড়াত ব্যৱহাৰ কৰা এটা সঁজুলিৰ নামেৰে নামকৰণ কৰা
হয়।
- source_sentence: >-
আৰু তাৰ পিছত মই তেওঁক যাবলৈ শুনিছিলোঁ, সেয়েহে মই এতিয়াও মোৰ কাম শেষ কৰি
আছো।
sentences:
- মই আজি যিটো কৰিব লাগিব সেয়া কৰি আছো।
- >-
"Bato (বা" "vato" ") এটা স্পেনিছ শব্দ যাৰ অৰ্থ হৈছে" "পুৰুষ" "বা"
"বন্ধু" "।"
- পিতৃ-মাতৃয়ে ঘৰত থাকিল।
- source_sentence: মই কেৱল বুজাবলৈ চেষ্টা কৰিছিলোঁ।
sentences:
- মই বুজিবলৈ চেষ্টা কৰিছিলোঁ।
- মই আন কেইবাটাও প্ৰস্তাৱ দিবলৈ আহিছিলোঁ।
- >-
প্ৰেমিক নামৰ এজন খেতিয়কে নিজৰ হত্যাৰ আঁচনি তৈয়াৰ কৰোতে ঘাসপূৰ্ণ স্থানত
লুকুৱাই থৈ যায়।
- source_sentence: >-
আৰু, উম, যদি এইটো বাঢ়ি আহিব আৰু কেৱল বাঢ়ি আহিব তেতিয়াহ 'লে' whish 'হ'
ব, আৰু যেনেকৈ ই আপোনাৰ মূৰটো বন্ধ কৰি দিব।
sentences:
- >-
প্ৰাৰম্ভিক শিক্ষা লাভ কৰা আৰু বয়সস্থ ল 'ৰা-ছোৱালীয়ে প্ৰায়ে ভৱিষ্যতৰ
বিষয়ে সপোন দেখে।
- তেওঁলোকে মোৰ ওচৰলৈ কিয় আহিছে বুলি প্ৰশ্ন কৰিলে।
- যদি কোনো ধৰণৰ পৰিৱৰ্তন হয়, তেনেহ 'লে তাৰ লগত এক শব্দ বাঢ়িব পাৰে।
- source_sentence: মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল
sentences:
- >-
মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ
পাই ভাল লাগিল।
- Shannon এ বাৰ্তা উপেক্ষা কৰিছে।
- মানুহজনে ষ্টক এক্সচেঞ্জত লেনদেনৰ বিষয়ে জানিবলৈ চেষ্টা কৰিছিল।
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pritamdeka/stsb assamese translated dev
type: pritamdeka/stsb-assamese-translated-dev
metrics:
- type: pearson_cosine
value: 0.7169579983340281
name: Pearson Cosine
- type: spearman_cosine
value: 0.7220987460972806
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7380110422340219
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7452082040848071
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7386577662108481
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7458961406429292
name: Spearman Euclidean
- type: pearson_dot
value: 0.6480820840127198
name: Pearson Dot
- type: spearman_dot
value: 0.6478256799308721
name: Spearman Dot
- type: pearson_max
value: 0.7386577662108481
name: Pearson Max
- type: spearman_max
value: 0.7458961406429292
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: pritamdeka/stsb assamese translated test
type: pritamdeka/stsb-assamese-translated-test
metrics:
- type: pearson_cosine
value: 0.656822131496386
name: Pearson Cosine
- type: spearman_cosine
value: 0.6621886312595516
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6675496858061083
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6722470705036974
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6681862838868354
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6727345795749732
name: Spearman Euclidean
- type: pearson_dot
value: 0.5691955650489428
name: Pearson Dot
- type: spearman_dot
value: 0.570867962692759
name: Spearman Dot
- type: pearson_max
value: 0.6681862838868354
name: Pearson Max
- type: spearman_max
value: 0.6727345795749732
name: Spearman Max
SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1")
# Run inference
sentences = [
'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল',
'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।',
'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.717 |
spearman_cosine | 0.7221 |
pearson_manhattan | 0.738 |
spearman_manhattan | 0.7452 |
pearson_euclidean | 0.7387 |
spearman_euclidean | 0.7459 |
pearson_dot | 0.6481 |
spearman_dot | 0.6478 |
pearson_max | 0.7387 |
spearman_max | 0.7459 |
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6568 |
spearman_cosine | 0.6622 |
pearson_manhattan | 0.6675 |
spearman_manhattan | 0.6722 |
pearson_euclidean | 0.6682 |
spearman_euclidean | 0.6727 |
pearson_dot | 0.5692 |
spearman_dot | 0.5709 |
pearson_max | 0.6682 |
spearman_max | 0.6727 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | - | 0.5489 | - |
0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - |
0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - |
0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - |
0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - |
0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - |
0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - |
0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - |
0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - |
0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - |
0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - |
0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - |
0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - |
0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - |
0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - |
0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - |
0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - |
0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - |
0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - |
0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - |
0.9778 | 10000 | 0.4828 | 0.9172 | 0.7221 | - |
1.0 | 10227 | - | - | - | 0.6622 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}