|
--- |
|
license: apache-2.0 |
|
base_model: google/muril-base-cased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: temp_assamese |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# temp_assamese |
|
|
|
This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co/google/muril-base-cased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4149 |
|
- Accuracy: 0.7014 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:------:|:-----:|:---------------:|:--------:| |
|
| 2.2163 | 0.1409 | 2000 | 1.8646 | 0.6320 | |
|
| 1.9456 | 0.2818 | 4000 | 1.7492 | 0.6495 | |
|
| 1.8391 | 0.4227 | 6000 | 1.6770 | 0.6606 | |
|
| 1.7704 | 0.5637 | 8000 | 1.6166 | 0.6707 | |
|
| 1.7213 | 0.7046 | 10000 | 1.5818 | 0.6759 | |
|
| 1.6802 | 0.8455 | 12000 | 1.5403 | 0.6820 | |
|
| 1.6432 | 0.9864 | 14000 | 1.5153 | 0.6858 | |
|
| 1.6074 | 1.1273 | 16000 | 1.4965 | 0.6885 | |
|
| 1.5833 | 1.2682 | 18000 | 1.4678 | 0.6934 | |
|
| 1.5649 | 1.4091 | 20000 | 1.4508 | 0.6950 | |
|
| 1.553 | 1.5501 | 22000 | 1.4367 | 0.6985 | |
|
| 1.5345 | 1.6910 | 24000 | 1.4231 | 0.7001 | |
|
| 1.5261 | 1.8319 | 26000 | 1.4157 | 0.7013 | |
|
| 1.5148 | 1.9728 | 28000 | 1.4098 | 0.7027 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.0.dev0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|