procit006's picture
End of training
37482d1 verified
metadata
language:
  - nl
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - procit006/STT_TTS_MozillaAndSTC_VoiceTextData_August27
metrics:
  - wer
model-index:
  - name: Whisper Small
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice + STC Aug 27 + Speechgen
          type: procit006/STT_TTS_MozillaAndSTC_VoiceTextData_August27
          args: 'config: nld'
        metrics:
          - name: Wer
            type: wer
            value: 1.3962338429236927

Whisper Small

This model is a fine-tuned version of openai/whisper-small on the Common Voice + STC Aug 27 + Speechgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0202
  • Wer: 1.3962

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0892 0.2047 500 0.0897 6.6898
0.048 0.4093 1000 0.0480 3.4328
0.0379 0.6140 1500 0.0339 2.2033
0.0299 0.8187 2000 0.0269 2.2453
0.0074 1.0233 2500 0.0216 1.4842
0.0055 1.2280 3000 0.0202 1.3962

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1