professorf's picture
update model card README.md
12b29e4
|
raw
history blame
3.48 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: distilbert-base-uncased-finetuned-IAM
    results: []

distilbert-base-uncased-finetuned-IAM

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9614
  • Accuracy: 0.5103
  • F1: 0.4923

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.4993 1.0 15 1.4646 0.3379 0.1707
1.4661 2.0 30 1.4345 0.3379 0.1827
1.4397 3.0 45 1.3804 0.3793 0.2763
1.3817 4.0 60 1.3284 0.3931 0.2855
1.3375 5.0 75 1.2819 0.4207 0.3629
1.3073 6.0 90 1.2493 0.4621 0.4363
1.3085 7.0 105 1.2250 0.4828 0.4577
1.2545 8.0 120 1.2133 0.4966 0.4758
1.29 9.0 135 1.1806 0.5034 0.4776
1.2587 10.0 150 1.1522 0.5034 0.4764
1.2009 11.0 165 1.1269 0.4966 0.4760
1.2258 12.0 180 1.1133 0.4966 0.4734
1.1466 13.0 195 1.0942 0.5034 0.4699
1.1569 14.0 210 1.0735 0.5034 0.4793
1.1194 15.0 225 1.0616 0.5034 0.4832
1.0909 16.0 240 1.0529 0.5034 0.4560
1.153 17.0 255 1.0334 0.5034 0.4822
1.0086 18.0 270 1.0246 0.5034 0.4765
1.1102 19.0 285 1.0111 0.5103 0.4920
1.0967 20.0 300 1.0024 0.5103 0.4952
1.0265 21.0 315 0.9922 0.5103 0.4937
1.0377 22.0 330 0.9848 0.5103 0.4908
1.0156 23.0 345 0.9794 0.5103 0.4972
1.0807 24.0 360 0.9796 0.5103 0.4928
1.051 25.0 375 0.9726 0.5103 0.4831
0.9827 26.0 390 0.9675 0.5103 0.4972
1.0228 27.0 405 0.9646 0.5103 0.4951
1.0013 28.0 420 0.9627 0.5103 0.4950
0.9963 29.0 435 0.9617 0.5103 0.4938
0.9897 30.0 450 0.9614 0.5103 0.4923

Framework versions

  • Transformers 4.24.0
  • Pytorch 1.13.1
  • Datasets 2.6.1
  • Tokenizers 0.11.0