Fairseq
Catalan
Chinese
fdelucaf's picture
Update README.md
ea4d964
|
raw
history blame
8.08 kB
metadata
license: apache-2.0

Projecte Aina’s Catalan-Chinese machine translation model

Table of Contents

Model description

This model was trained from scratch using the Fairseq toolkit on a combination of Catalan-Chinese datasets totalling 6.833.114 sentence pairs. 174.507 sentence pairs were parallel data collected from the web while the remaining 6.658.607 sentence pairs were parallel synthetic data created using the ES-CA translator of PlanTL. The model was evaluated on the Flores and NTREX evaluation datasets.

Intended uses and limitations

You can use this model for machine translation from Catalan to simplified Chinese.

How to use

Usage

Required libraries:

pip install ctranslate2 pyonmttok

Translate a sentence using python

import ctranslate2
import pyonmttok
import re

def remove_jieba(text):
     rejoin_chinese = re.sub(r'(?<!\s)\s(?! )', '', text)
     return re.sub(r'\s+', ' ', rejoin_chinese)

from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id="projecte-aina/mt-aina-ca-zh", revision="main")
tokenizer=pyonmttok.Tokenizer(mode="none", sp_model_path = model_dir + "/spm.model")
tokenized=tokenizer.tokenize("Benvingut al projecte Aina!")
translator = ctranslate2.Translator(model_dir)
translated = translator.translate_batch([tokenized[0]])
translation = tokenizer.detokenize(translated[0][0]['tokens'])
print(remove_jieba(translation))

Training

Training data

The Catalan-Chinese data collected from the web was a combination of the following datasets:

Dataset Sentences before cleaning
WikiMatrix 90.643
XLENT 535.803
GNOME 78
QED 3.677
TED2020 v1 56.269
OpenSubtitles 139.300
Total 882.039

The 6.658.607 sentence pairs of synthetic parallel data were created from the following Spanish-Chinese datasets:

Dataset Sentences before cleaning
UNPC 17.599.223
CCMatrix 24.051.233
MultiParacrawl 3.410.087
Total 45.060.543

Training procedure

Data preparation

The Chinese side of all datasets are passed through the fastlangid language detector and any sentences which are not identified as simplified Chinese are discarded. The datasets are then also deduplicated and filtered to remove any sentence pairs with a cosine similarity of less than 0.75. This is done using sentence embeddings calculated using LaBSE. The filtered datasets are then concatenated to form a final corpus of 6.833.114. The Chinese side of the dataset is tokenized using Jieba and before training the punctuation is normalized using a modified version of the join-single-file.py script from SoftCatalà.

Tokenization

All data is tokenized using sentencepiece, with a 50 thousand token sentencepiece model learned from the combination of all filtered training data. This model is included.

Hyperparameters

The model is based on the Transformer-XLarge proposed by Subramanian et al. The following hyperparameters were set on the Fairseq toolkit:

Hyperparameter Value
Architecture transformer_vaswani_wmt_en_de_big
Embedding size 1024
Feedforward size 4096
Number of heads 16
Encoder layers 24
Decoder layers 6
Normalize before attention True
--share-decoder-input-output-embed True
--share-all-embeddings True
Effective batch size 48.000
Optimizer adam
Adam betas (0.9, 0.980)
Clip norm 0.0
Learning rate 5e-4
Lr. schedurer inverse sqrt
Warmup updates 8000
Dropout 0.1
Label smoothing 0.1

The model was trained for 17.000 updates. Weights were saved every 1000 updates and reported results are the average of the last 4 checkpoints.

Evaluation

Variable and metrics

We use the BLEU score for evaluation on test sets: Flores-200.

Evaluation results

Below are the evaluation results on the machine translation from Catalan to Chinese compared to Google Translate, M2M 1.2B and NLLB-200's distilled 1.3B variant:

Test set Google Translate M2M 1.2B NLLB 1.3B mt-aina-ca-zh
Flores Dev 42,6 27,8 18,9 31,4
Flores Devtest 43,7 28,4 18,4 32,6
NTREX 36,3 24,4 14,2 26,6
Average 41,0 26,9 17,0 30,2

Additional information

Author

Language Technologies Unit (LangTech) at the Barcelona Supercomputing Center.

Contact information

For further information, send an email to [email protected]

Copyright

Copyright Language Technologies Unit at Barcelona Supercomputing Center (2023)

Licensing information

This work is licensed under a Apache License, Version 2.0

Funding

This work was funded by the Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya within the framework of Projecte AINA.

Disclaimer

Click to expand The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.