metadata
datasets:
- code_search_net
language:
- code
pipeline_tag: text-classification
inference: false
tags:
- code
- programming-language
base_model: huggingface/CodeBERTa-language-id
ONNX version of huggingface/CodeBERTa-language-id
This model is conversion of huggingface/CodeBERTa-language-id to ONNX. The model was converted to ONNX using the 🤗 Optimum library.
Model Architecture
Base Model: CodeBERTa, a variant of the RoBERTa model trained specifically for programming languages.
Modifications: No changes except for the conversion.
Usage
Optimum
Loading the model requires the 🤗 Optimum library installed.
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("laiyer/CodeBERTa-language-id")
model = ORTModelForSequenceClassification.from_pretrained("laiyer/CodeBERTa-language-id")
classifier = pipeline(
task="text-classification",
model=model,
tokenizer=tokenizer,
)
print(classifier("""
def f(x):
return x**2
"""))
LLM Guard
Community
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!