asofter's picture
Update README.md
7bc4fa9 verified
metadata
language:
  - en
pipeline_tag: text-classification
base_model: DunnBC22/codebert-base-Malicious_URLs
inference: false
datasets:
  - sid321axn/malicious-urls-dataset
tags:
  - malicious-urls
  - url

ONNX version of DunnBC22/codebert-base-Malicious_URLs

This model is a conversion of DunnBC22/codebert-base-Malicious_URLs to ONNX format. It's based on the CodeBERT architecture, tailored for the specific task of identifying URLs that may pose security threats. The model was converted to ONNX using the 🤗 Optimum library.

Model Architecture

Base Model: CodeBERT-base, a robust model for programming and natural languages.

Dataset: https://www.kaggle.com/datasets/sid321axn/malicious-urls-dataset.

Modifications: Details of any modifications or fine-tuning done to tailor the model for malicious URL detection.

Usage

Loading the model requires the 🤗 Optimum library installed.

from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline


tokenizer = AutoTokenizer.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
model = ORTModelForSequenceClassification.from_pretrained("laiyer/codebert-base-Malicious_URLs-onnx")
classifier = pipeline(
    task="text-classification",
    model=model,
    tokenizer=tokenizer,
    top_k=None,
)

classifier_output = classifier("https://google.com")
print(classifier_output)

LLM Guard

Malicious URLs scanner

Community

Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!