ONNX-converted models
Collection
Models converted to ONNX for faster CPU inference on LLM Guard.
•
27 items
•
Updated
This model is a conversion of MoritzLaurer/deberta-v3-base-zeroshot-v1 to ONNX format using the 🤗 Optimum library.
MoritzLaurer/deberta-v3-large-zeroshot-v1
is designed for zero-shot classification, capable of determining whether a hypothesis is true
or not_true
based on a text, a format based on Natural Language Inference (NLI).
Loading the model requires the 🤗 Optimum library installed.
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
model = ORTModelForSequenceClassification.from_pretrained("laiyer/deberta-v3-base-zeroshot-v1-onnx")
classifier = pipeline(
task="zero-shot-classification",
model=model,
tokenizer=tokenizer,
)
classifier_output = classifier("Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.", ["mobile", "website", "billing", "account access"])
print(classifier_output)
Join our Slack to give us feedback, connect with the maintainers and fellow users, ask questions, or engage in discussions about LLM security!
Base model
MoritzLaurer/deberta-v3-base-zeroshot-v1