metadata
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-summary
This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
Usage
To use this model, please install BERTopic:
pip install -U bertopic
You can use the model as follows:
from bertopic import BERTopic
topic_model = BERTopic.load("pszemraj/BERTopic-summcomparer-gauntlet-v0p1-all-roberta-large-v1-summary")
topic_model.get_topic_info()
Topic overview
- Number of topics: 25
- Number of training documents: 1960
Click here for an overview of all topics.
Topic ID | Topic Keywords | Topic Frequency | Label |
---|---|---|---|
-1 | question - it - going - they - she | 11 | -1_question_it_going_they |
0 | merging - merge - operations - concept - computation | 62 | 0_merging_merge_operations_concept |
1 | rainsford - island - sailors - hunted - hunting | 208 | 1_rainsford_island_sailors_hunted |
2 | film - films - noir - dissertation - cinema | 116 | 2_film_films_noir_dissertation |
3 | patients - predicting - predict - prediction - unsupervised | 114 | 3_patients_predicting_predict_prediction |
4 | cogvideo - videos - cogview2 - cog - pretrained | 108 | 4_cogvideo_videos_cogview2_cog |
5 | frozen - sled - snow - princess - hans | 108 | 5_frozen_sled_snow_princess |
6 | dory - coral - fish - gill - ocean | 103 | 6_dory_coral_fish_gill |
7 | captions - encoder - image - images - caption | 103 | 7_captions_encoder_image_images |
8 | law - assignments - lectures - assignment - learning | 99 | 8_law_assignments_lectures_assignment |
9 | convolutional - segmentation - imaging - pathology - superpixels | 98 | 9_convolutional_segmentation_imaging_pathology |
10 | enhancement - enhancing - vocoding - vocoder - audio | 97 | 10_enhancement_enhancing_vocoding_vocoder |
11 | tokenization - medical - health - words - embeddings | 97 | 11_tokenization_medical_health_words |
12 | gillis - scene - script - sunset - movie | 93 | 12_gillis_scene_script_sunset |
13 | anthony - antony - scene - guy - his | 92 | 13_anthony_antony_scene_guy |
14 | topic - projects - sociology - research - students | 90 | 14_topic_projects_sociology_research |
15 | peter - conversation - asks - questions - cheesy | 88 | 15_peter_conversation_asks_questions |
16 | sniper - marine - unarmed - combat - trained | 86 | 16_sniper_marine_unarmed_combat |
17 | communication - apparatus - method - input - embodiment | 68 | 17_communication_apparatus_method_input |
18 | words - phrases - political - unsupervised - topic | 27 | 18_words_phrases_political_unsupervised |
19 | clustering - similarity - unsupervised - topic - plagiarism | 23 | 19_clustering_similarity_unsupervised_topic |
20 | book - novel - father - read - arrives | 21 | 20_book_novel_father_read |
21 | topic - loans - clustering - loan - analyze | 19 | 21_topic_loans_clustering_loan |
22 | sciences - science - society - research - scientists | 16 | 22_sciences_science_society_research |
23 | dynamics - situation - quantum - mechanics - note | 13 | 23_dynamics_situation_quantum_mechanics |
Training hyperparameters
- calculate_probabilities: True
- language: None
- low_memory: False
- min_topic_size: 10
- n_gram_range: (1, 1)
- nr_topics: None
- seed_topic_list: None
- top_n_words: 10
- verbose: True
Framework versions
- Numpy: 1.22.4
- HDBSCAN: 0.8.29
- UMAP: 0.5.3
- Pandas: 1.5.3
- Scikit-Learn: 1.2.2
- Sentence-transformers: 2.2.2
- Transformers: 4.29.2
- Numba: 0.56.4
- Plotly: 5.13.1
- Python: 3.10.11