Edit model card

Llama-3-6.3b-v0.1

This is a layer pruning experiment based off of the original llama-3-8b:

  • 8 layers pruned with PruneMe/MergeKit
  • brief subsequent continued pretraining @ ctx 4096
    • data: 10k rows of FineWeb (different than pruning data) + some curated data
  • wandb here

quick eval

hf (pretrained=pszemraj/Llama-3-6.3b-v0.1,trust_remote_code=True,dtype=bfloat16), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 1

Tasks Version Filter n-shot Metric Value Stderr
arc_easy 1 none 0 acc 0.7109 ± 0.0093
none 0 acc_norm 0.6843 ± 0.0095
boolq 2 none 0 acc 0.7920 ± 0.0071
lambada_openai 1 none 0 perplexity 4.5411 ± 0.1073
none 0 acc 0.6734 ± 0.0065
openbookqa 1 none 0 acc 0.3000 ± 0.0205
none 0 acc_norm 0.4140 ± 0.0220
piqa 1 none 0 acc 0.7443 ± 0.0102
none 0 acc_norm 0.7530 ± 0.0101
winogrande 1 none 0 acc 0.7127 ± 0.0127

Details

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: pszemraj/llama-3-prune_8
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

strict: false
seed: 80085

# dataset
datasets:
    - path: BEE-spoke-data/KI-smorgasbord_fw-small
      type: completion # format from earlier
      field: text # Optional[str] default: text, field to use for completion data
val_set_size: 0.015

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: false
train_on_inputs: false
group_by_length: false

# WANDB
wandb_project: llama3-pruning
wandb_entity: pszemraj
wandb_watch: gradients
wandb_name: Llama-3-6.3b-v0.1
hub_model_id: pszemraj/Llama-3-6.3b-v0.1
hub_strategy: every_save

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused # paged_adamw_32bit
weight_decay: 0.05
lr_scheduler: cosine
learning_rate: 4e-5
warmup_ratio: 0.1

load_in_8bit: false
load_in_4bit: false
bfloat16: true
tf32: true

flash_attention: true
torch_compile: true # requires >= torch 2.0, may sometimes cause problems
torch_compile_backend: inductor # Optional[str]
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false

# hyperparams for freq of evals, saving, etc
evals_per_epoch: 5
saves_per_epoch: 3
save_safetensors: true
save_total_limit: 1
output_dir: ./output-axolotl/output-model-6.3b
logging_steps: 8

deepspeed:

special_tokens:
  pad_token: <|end_of_text|>

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 7.8100
2.2782 0.2002 320 2.3728
2.2699 0.4004 640 2.3265
2.3761 0.6006 960 2.2849
2.2448 0.8008 1280 2.2702

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 10.28
IFEval (0-Shot) 10.44
BBH (3-Shot) 18.68
MATH Lvl 5 (4-Shot) 1.51
GPQA (0-shot) 4.47
MuSR (0-shot) 6.15
MMLU-PRO (5-shot) 20.44
Downloads last month
17
Safetensors
Model size
6.29B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pszemraj/Llama-3-6.3b-v0.1

Finetuned
(354)
this model
Finetunes
6 models
Quantizations
3 models

Evaluation results