pszemraj's picture
Librarian Bot: Add base_model information to model (#1)
2e643ec
|
raw
history blame
3 kB
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - matthews_correlation
widget:
  - text: The cat sat on the mat.
    example_title: Correct grammatical sentence
  - text: Me and my friend going to the store.
    example_title: Incorrect subject-verb agreement
  - text: I ain't got no money.
    example_title: Incorrect verb conjugation and double negative
  - text: She don't like pizza no more.
    example_title: Incorrect verb conjugation and double negative
  - text: They is arriving tomorrow.
    example_title: Incorrect verb conjugation
base_model: google/electra-small-discriminator
model-index:
  - name: electra-small-discriminator-CoLA
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: GLUE COLA
          type: glue
          config: cola
          split: validation
          args: cola
        metrics:
          - type: matthews_correlation
            value: 0.5510400717227824
            name: Matthews Correlation

electra-small-discriminator-CoLA

This model is a fine-tuned version of google/electra-small-discriminator on the GLUE COLA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4403
  • Matthews Correlation: 0.5510

Model description

trying to optimize accuracy/speed:

{
    "epoch": 8.0,
    "eval_loss": 0.4402828514575958,
    "eval_matthews_correlation": 0.5510400717227824,
    "eval_runtime": 0.9341,
    "eval_samples": 1043,
    "eval_samples_per_second": 1116.545,
    "eval_steps_per_second": 70.654
}

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 512
  • eval_batch_size: 16
  • seed: 32754
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 8.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Matthews Correlation
0.6139 1.0 17 0.5997 0.0
0.5315 2.0 34 0.4890 0.5154
0.4244 3.0 51 0.4469 0.5433
0.3568 4.0 68 0.4403 0.5510
0.319 5.0 85 0.4517 0.5654
0.2887 6.0 102 0.4656 0.5728
0.2771 7.0 119 0.4558 0.5883
0.2729 8.0 136 0.4569 0.5858

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.8.0
  • Tokenizers 0.13.1