|
--- |
|
language: |
|
- en |
|
license: |
|
- apache-2.0 |
|
- bsd-3-clause |
|
tags: |
|
- summarization |
|
- led |
|
- summary |
|
- longformer |
|
- booksum |
|
- long-document |
|
- long-form |
|
datasets: |
|
- kmfoda/booksum |
|
metrics: |
|
- rouge |
|
widget: |
|
- text: large earthquakes along a given fault segment do not occur at random intervals |
|
because it takes time to accumulate the strain energy for the rupture. The rates |
|
at which tectonic plates move and accumulate strain at their boundaries are approximately |
|
uniform. Therefore, in first approximation, one may expect that large ruptures |
|
of the same fault segment will occur at approximately constant time intervals. |
|
If subsequent main shocks have different amounts of slip across the fault, then |
|
the recurrence time may vary, and the basic idea of periodic mainshocks must be |
|
modified. For great plate boundary ruptures the length and slip often vary by |
|
a factor of 2. Along the southern segment of the San Andreas fault the recurrence |
|
interval is 145 years with variations of several decades. The smaller the standard |
|
deviation of the average recurrence interval, the more specific could be the long |
|
term prediction of a future mainshock. |
|
example_title: earthquakes |
|
- text: ' A typical feed-forward neural field algorithm. Spatiotemporal coordinates |
|
are fed into a neural network that predicts values in the reconstructed domain. |
|
Then, this domain is mapped to the sensor domain where sensor measurements are |
|
available as supervision. Class and Section Problems Addressed Generalization |
|
(Section 2) Inverse problems, ill-posed problems, editability; symmetries. Hybrid |
|
Representations (Section 3) Computation & memory efficiency, representation capacity, |
|
editability: Forward Maps (Section 4) Inverse problems Network Architecture (Section |
|
5) Spectral bias, integration & derivatives. Manipulating Neural Fields (Section |
|
6) Edit ability, constraints, regularization. Table 2: The five classes of techniques |
|
in the neural field toolbox each addresses problems that arise in learning, inference, |
|
and control. (Section 3). We can supervise reconstruction via differentiable forward |
|
maps that transform Or project our domain (e.g, 3D reconstruction via 2D images; |
|
Section 4) With appropriate network architecture choices, we can overcome neural |
|
network spectral biases (blurriness) and efficiently compute derivatives and integrals |
|
(Section 5). Finally, we can manipulate neural fields to add constraints and regularizations, |
|
and to achieve editable representations (Section 6). Collectively, these classes |
|
constitute a ''toolbox'' of techniques to help solve problems with neural fields |
|
There are three components in a conditional neural field: (1) An encoder or inference |
|
function € that outputs the conditioning latent variable 2 given an observation |
|
0 E(0) =2. 2 is typically a low-dimensional vector, and is often referred to aS |
|
a latent code Or feature code_ (2) A mapping function 4 between Z and neural field |
|
parameters O: Y(z) = O; (3) The neural field itself $. The encoder € finds the |
|
most probable z given the observations O: argmaxz P(2/0). The decoder maximizes |
|
the inverse conditional probability to find the most probable 0 given Z: arg- |
|
max P(Olz). We discuss different encoding schemes with different optimality guarantees |
|
(Section 2.1.1), both global and local conditioning (Section 2.1.2), and different |
|
mapping functions Y (Section 2.1.3) 2. Generalization Suppose we wish to estimate |
|
a plausible 3D surface shape given a partial or noisy point cloud. We need a suitable |
|
prior over the sur- face in its reconstruction domain to generalize to the partial |
|
observations. A neural network expresses a prior via the function space of its |
|
architecture and parameters 0, and generalization is influenced by the inductive |
|
bias of this function space (Section 5).' |
|
example_title: scientific paper |
|
- text: ' the big variety of data coming from diverse sources is one of the key properties |
|
of the big data phenomenon. It is, therefore, beneficial to understand how data |
|
is generated in various environments and scenarios, before looking at what should |
|
be done with this data and how to design the best possible architecture to accomplish |
|
this The evolution of IT architectures, described in Chapter 2, means that the |
|
data is no longer processed by a few big monolith systems, but rather by a group |
|
of services In parallel to the processing layer, the underlying data storage has |
|
also changed and became more distributed This, in turn, required a significant |
|
paradigm shift as the traditional approach to transactions (ACID) could no longer |
|
be supported. On top of this, cloud computing is becoming a major approach with |
|
the benefits of reducing costs and providing on-demand scalability but at the |
|
same time introducing concerns about privacy, data ownership, etc In the meantime |
|
the Internet continues its exponential growth: Every day both structured and unstructured |
|
data is published and available for processing: To achieve competitive advantage |
|
companies have to relate their corporate resources to external services, e.g. |
|
financial markets, weather forecasts, social media, etc While several of the sites |
|
provide some sort of API to access the data in a more orderly fashion; countless |
|
sources require advanced web mining and Natural Language Processing (NLP) processing |
|
techniques: Advances in science push researchers to construct new instruments |
|
for observing the universe O conducting experiments to understand even better |
|
the laws of physics and other domains. Every year humans have at their disposal |
|
new telescopes, space probes, particle accelerators, etc These instruments generate |
|
huge streams of data, which need to be stored and analyzed. The constant drive |
|
for efficiency in the industry motivates the introduction of new automation techniques |
|
and process optimization: This could not be done without analyzing the precise |
|
data that describe these processes. As more and more human tasks are automated, |
|
machines provide rich data sets, which can be analyzed in real-time to drive efficiency |
|
to new levels. Finally, it is now evident that the growth of the Internet of Things |
|
is becoming a major source of data. More and more of the devices are equipped |
|
with significant computational power and can generate a continuous data stream |
|
from their sensors. In the subsequent sections of this chapter, we will look at |
|
the domains described above to see what they generate in terms of data sets. We |
|
will compare the volumes but will also look at what is characteristic and important |
|
from their respective points of view. 3.1 The Internet is undoubtedly the largest |
|
database ever created by humans. While several well described; cleaned, and structured |
|
data sets have been made available through this medium, most of the resources |
|
are of an ambiguous, unstructured, incomplete or even erroneous nature. Still, |
|
several examples in the areas such as opinion mining, social media analysis, e-governance, |
|
etc, clearly show the potential lying in these resources. Those who can successfully |
|
mine and interpret the Internet data can gain unique insight and competitive advantage |
|
in their business An important area of data analytics on the edge of corporate |
|
IT and the Internet is Web Analytics.' |
|
example_title: data science textbook |
|
- text: 'Transformer-based models have shown to be very useful for many NLP tasks. |
|
However, a major limitation of transformers-based models is its O(n^2)O(n 2) time |
|
& memory complexity (where nn is sequence length). Hence, it''s computationally |
|
very expensive to apply transformer-based models on long sequences n > 512n>512. |
|
Several recent papers, e.g. Longformer, Performer, Reformer, Clustered attention |
|
try to remedy this problem by approximating the full attention matrix. You can |
|
checkout 🤗''s recent blog post in case you are unfamiliar with these models. |
|
|
|
BigBird (introduced in paper) is one of such recent models to address this issue. |
|
BigBird relies on block sparse attention instead of normal attention (i.e. BERT''s |
|
attention) and can handle sequences up to a length of 4096 at a much lower computational |
|
cost compared to BERT. It has achieved SOTA on various tasks involving very long |
|
sequences such as long documents summarization, question-answering with long contexts. |
|
|
|
BigBird RoBERTa-like model is now available in 🤗Transformers. The goal of this |
|
post is to give the reader an in-depth understanding of big bird implementation |
|
& ease one''s life in using BigBird with 🤗Transformers. But, before going into |
|
more depth, it is important to remember that the BigBird''s attention is an approximation |
|
of BERT''s full attention and therefore does not strive to be better than BERT''s |
|
full attention, but rather to be more efficient. It simply allows to apply transformer-based |
|
models to much longer sequences since BERT''s quadratic memory requirement quickly |
|
becomes unbearable. Simply put, if we would have ∞ compute & ∞ time, BERT''s attention |
|
would be preferred over block sparse attention (which we are going to discuss |
|
in this post). |
|
|
|
If you wonder why we need more compute when working with longer sequences, this |
|
blog post is just right for you! |
|
|
|
Some of the main questions one might have when working with standard BERT-like |
|
attention include: |
|
|
|
Do all tokens really have to attend to all other tokens? Why not compute attention |
|
only over important tokens? How to decide what tokens are important? How to attend |
|
to just a few tokens in a very efficient way? In this blog post, we will try to |
|
answer those questions. |
|
|
|
What tokens should be attended to? We will give a practical example of how attention |
|
works by considering the sentence ''BigBird is now available in HuggingFace for |
|
extractive question answering''. In BERT-like attention, every word would simply |
|
attend to all other tokens. |
|
|
|
Let''s think about a sensible choice of key tokens that a queried token actually |
|
only should attend to by writing some pseudo-code. Will will assume that the token |
|
available is queried and build a sensible list of key tokens to attend to. |
|
|
|
>>> # let''s consider following sentence as an example >>> example = [''BigBird'', |
|
''is'', ''now'', ''available'', ''in'', ''HuggingFace'', ''for'', ''extractive'', |
|
''question'', ''answering''] |
|
|
|
>>> # further let''s assume, we''re trying to understand the representation of |
|
''available'' i.e. >>> query_token = ''available'' >>> # We will initialize an |
|
empty `set` and fill up the tokens of our interest as we proceed in this section. |
|
>>> key_tokens = [] # => currently ''available'' token doesn''t have anything |
|
to attend Nearby tokens should be important because, in a sentence (sequence of |
|
words), the current word is highly dependent on neighboring past & future tokens. |
|
This intuition is the idea behind the concept of sliding attention.' |
|
example_title: bigbird blog intro |
|
- text: 'The majority of available text summarization datasets include short-form |
|
source documents that lack long-range causal and temporal dependencies, and often |
|
contain strong layout and stylistic biases. While relevant, such datasets will |
|
offer limited challenges for future generations of text summarization systems. |
|
We address these issues by introducing BookSum, a collection of datasets for long-form |
|
narrative summarization. Our dataset covers source documents from the literature |
|
domain, such as novels, plays and stories, and includes highly abstractive, human |
|
written summaries on three levels of granularity of increasing difficulty: paragraph-, |
|
chapter-, and book-level. The domain and structure of our dataset poses a unique |
|
set of challenges for summarization systems, which include: processing very long |
|
documents, non-trivial causal and temporal dependencies, and rich discourse structures. |
|
To facilitate future work, we trained and evaluated multiple extractive and abstractive |
|
summarization models as baselines for our dataset.' |
|
example_title: BookSum Abstract |
|
inference: |
|
parameters: |
|
max_length: 64 |
|
min_length: 8 |
|
no_repeat_ngram_size: 3 |
|
early_stopping: true |
|
repetition_penalty: 3.5 |
|
length_penalty: 0.3 |
|
encoder_no_repeat_ngram_size: 3 |
|
num_beams: 4 |
|
model-index: |
|
- name: pszemraj/led-large-book-summary |
|
results: |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: kmfoda/booksum |
|
type: kmfoda/booksum |
|
config: kmfoda--booksum |
|
split: test |
|
metrics: |
|
- type: rouge |
|
value: 31.7308 |
|
name: ROUGE-1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjJmZjMxYTY0OGU3MzNjNmIzNmYyODNlNDg2ZGRhZDAzNTMwMDM5YWMxODc1OTc1ZWE3MzM2OTg1ODFhZDBkNCIsInZlcnNpb24iOjF9.B8BCKgySYVZW910_1zP0LfCpQYJbAe6loyWut76JlgZb2kV1_x9ybqtNESX0ka-lNqhYyXUNDpuS-7pTmsJVDg |
|
- type: rouge |
|
value: 5.3311 |
|
name: ROUGE-2 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzViMmY4ODFjYTc5ODk5MmRhMDQ3ZDRiYWQwMDg0OTk3ZTA4NDAxYTNiNDgyMmI4NDA3ZDMwYWViOTBkODBjNyIsInZlcnNpb24iOjF9.MOhJLDcgvv93mVFL1igIgIiTAH3b2Xa4gmBObq7RF44Mmu8Kxtd1KP7rOlDVFOrtrsooGPGsyE1GMCQ2kqeMDg |
|
- type: rouge |
|
value: 16.1465 |
|
name: ROUGE-L |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzNjMzEwMTliZGE3ZmQ4M2UxMDAyMTY3YzJjZmMyMDYyN2YyNDM0N2VhNzI1MDc1YTg4MTRjMmEzNjVkNTk1NCIsInZlcnNpb24iOjF9.XLJ-DVKiYLlbw5E5rWADKbzUzf5fNHhlTCWPCC5dU4NI9Yeh76aR7TPt36ZzLDwTBknnR8KHqlaF8F8YAvBUAg |
|
- type: rouge |
|
value: 29.0883 |
|
name: ROUGE-LSUM |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTcwNzEwMmE5NjQxZTkzYmQyZDZmNzllYzYyNGI5OTMyNWMwNjdiM2I2YmM5YjdmY2E5OWQ3OTk3ZDA1MTc3YyIsInZlcnNpb24iOjF9.d6rFxjCB6RJNI_pn2DNNSjuZe4rdvj0RatkaTJRp5lP0F_AFfU5Zn9zRWzZJV7V-xMauIc4UhfdoLp9r_-CABA |
|
- type: loss |
|
value: 4.815707206726074 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTMwMTgxMmJkODY3MjkzOWJhMzJhOTIxMWVkODhjZmM0MWUzMWQ1N2JkZjRhOTQxNmU1YWVjYzQ0MDNlZWI3OSIsInZlcnNpb24iOjF9.mkBQHYhYFfDV6F4klXGJ1dSsF-pbCs-6F9zcw6IYznwmXUjtk7m5J4Zt4JAju5LKz4YizvEcUCl_L0WddnfvDA |
|
- type: gen_len |
|
value: 154.9036 |
|
name: gen_len |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTc0ZmM1ZDM4MDE0MzY3MDM3OWJhNDkzZjJkZDdkMjU5M2JmMDJjYTIxODA1OTllNmY5ZWQzZDlmNWFiYzk4NiIsInZlcnNpb24iOjF9.VQ_O_xSTz870tnM08PJXQOwg9OsNNwI_HVX4S7AuW57_FzGGyRaWSuGE5SWzRS4Tur9YP0QxV4VV0Yoaoi3IAA |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: test |
|
metrics: |
|
- type: rouge |
|
value: 33.4484 |
|
name: ROUGE-1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTk4Yjg1YTc4YmY0MzBiZDU4ZjFhNzI4MjZkMWU1MzBlOWNlMjQ5ODMzY2YzYzRhYjJkMGUzNmI3ZjdkMzIzZSIsInZlcnNpb24iOjF9.AqS8A1OUiM0IZFBEGirv5F3Novk8lSUYSfPc3bYWLA6t-W7wgup3qA207eGbE5j9CkDWZ7QrSG1U6Z9A0sOqAA |
|
- type: rouge |
|
value: 10.4249 |
|
name: ROUGE-2 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2U4NjUyNTFmOGM5OTlhZDMyMTlmM2E4OWI2NGFiMDAyMGJjMzRjNWNlMGEyYWFmNTE5ZWMxM2I0ZGZmNWNmOCIsInZlcnNpb24iOjF9.SgJcHJ4qoRWXFvFiwv1PUutWktvsxQNynVPEv-GtBgxd6WI7o561ONyco5U-5tcyE_1SbSCJzz-L-R-q3cvoDA |
|
- type: rouge |
|
value: 24.5802 |
|
name: ROUGE-L |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmQ5MDI5MzdiNGE5NDM0MmU5OThmZTBkNjkxMzg5N2IxNGVlODdhZTZhNjg3NzFjYWEyMzA3MTQxNjMyMjRkOCIsInZlcnNpb24iOjF9.Bg5dHqCcJjmxa-xGWNR5lD9g3quX7lKkH0pjiTd2xE5WiPoLLN2c0mYa2GovdW7__WnYwhhHC7es03jmvyZbCw |
|
- type: rouge |
|
value: 29.8226 |
|
name: ROUGE-LSUM |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGFhOTEwNGM1MmZkNDk2ZjQ1Y2MyNjM3MGI5MGY3MWVkM2I0MjU2NWFiYmEwMjE4MTJlZWIwOGQ2MjQ3YjgzYSIsInZlcnNpb24iOjF9.W_aQKs10oXQdKEczJBGM3iiwJgb-VaXTpyA3sGof5WbhHf9vITAQA-xvynh5LgKtXQ1zjx737hnHgjEsu_Y0Cw |
|
- type: loss |
|
value: 4.176078796386719 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2JhODQ5YTZkNDZkZGYyNGU2MzkxMWU5MTEwMGM2YmVjZTA5YzI5NTMxMDNhYjhlOTAxMzFiMDYwYmM0MjEzZCIsInZlcnNpb24iOjF9.OvZrPBOR5jhkoTGBgsInkH7j3_xpacXHDoT7UIXEnyXzadfBO-O-K6fjalLNZw8wSkbjHIFcL_6S_qTTxPsNAQ |
|
- type: gen_len |
|
value: 65.4005 |
|
name: gen_len |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2NhYjc3ZjQzNDEwYmMzOTM0ODkyZTJhZWNhNzZhYmEyZTYxMzA2YTYzMWFjOTA5ZjlhYWMzODg3NzY1ZTUwYSIsInZlcnNpb24iOjF9.vk9bgmtQFeRwdY3VXjtrJr_5wUCIeoAkI3kO0cHxhxmJo6RvUnyXiut72FuB-mlLZvqgiNkaZ-u_bh0Z3DjuCw |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: billsum |
|
type: billsum |
|
config: default |
|
split: test |
|
metrics: |
|
- type: rouge |
|
value: 40.5843 |
|
name: ROUGE-1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTVjMDkyMWZjYTQ0NzgzNGUxZjNiMTg3NjU1MWJlNTQ2MWQ1NjE1MDk1OTU4ZjJiNGQ5ODg3Y2VlMWUyMzllNyIsInZlcnNpb24iOjF9.OhqBcVIuHk7fzmdrsWMvUe1bLeVMZVstZUoZpP7C1vR-3aIDl7r6eBmPrt5w-KcNq5p4teNPBsq7oKzbd5ZgDQ |
|
- type: rouge |
|
value: 17.3401 |
|
name: ROUGE-2 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGQxYmQzMmE0OTcyNTM5NmMwNjIxNzYxZDcwMDFkYzJkOWY4YWY3NTdhZGRhZDdlMDAxNzcwODQ5OGM3Mzc1MCIsInZlcnNpb24iOjF9.Pksn25EEqvmx757N7Swrd4yXc_xU7-AMN9yNe8lrbBa-l1LoI_2PUASvnjML4f705cfuyMAfb0FkFp5WfER2AA |
|
- type: rouge |
|
value: 25.1256 |
|
name: ROUGE-L |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjhjYzI5MDBiMjk2NTY3MDNmZTdiOGYwMTRlYjIwZjAwMjdlNTAyYzdhYTJlODQ4MjYzYmQ3MjRlYTA2YzhhZSIsInZlcnNpb24iOjF9.1jPepsweS2bzIqDverQzzhmhFGch7gpoEGFGqQ8zW7K10aUKWFX8lt-uZAmTa1Z5ZhzyXGBzc3dReFPhWRRJBg |
|
- type: rouge |
|
value: 34.6619 |
|
name: ROUGE-LSUM |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2VkZDIxNWJjOTA0NzFjOTIwOTdjYjc1M2EyNDVjZjY2ZjY3MjIxNDk3YTc5YWExNzAwN2FhOTc1NjVhYjBkYiIsInZlcnNpb24iOjF9.8opqHSUckPohoSF9jfPTpXDz2AtDwvdMqOdIXx2kE1tkOcbLPbOBfcc8RhRR98y8S26yC6EYFhFnf03CV2ejAQ |
|
- type: loss |
|
value: 4.792657375335693 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTY5ZTRkMGU3OGVkODMzMDU5OWE1NTM5YjA4NDliZDlmNzc2NzZjNjFmNTA3M2EwY2NmN2E0MWJmZjQ5ZDliMiIsInZlcnNpb24iOjF9.KCKdk8xt2NWcMmYKV3-9eVEsFm9MqGllSMu9QCFJFIQlnyNXllHKdBLouoaGQz8IRYXvZKH8_TLDPIQx-31jAg |
|
- type: gen_len |
|
value: 163.9394 |
|
name: gen_len |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzdkZDYyZGUzYmFkZmI2NjUwYmQ0MzZjMmIyZjI1YTFiMzM4OThiZjBiMzljOTVkZTgwMjA0NTE5OGM2YmFjMiIsInZlcnNpb24iOjF9.XyMZLUdkUIF32KTJMuv_bJswQCx_Tfg4Fx823cURUixSeoIKps8_a634AreZ3Z8kb7bfE_sFGh3rM9KWsMxlDw |
|
- task: |
|
type: summarization |
|
name: Summarization |
|
dataset: |
|
name: multi_news |
|
type: multi_news |
|
config: default |
|
split: test |
|
metrics: |
|
- type: rouge |
|
value: 39.0834 |
|
name: ROUGE-1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjYzMmVlMDM4MTNkMTI4MjAyMTU2YTg1ZWQwNTI1MmJlNGUwZmE1NTRmYTljZTQwY2RlMjcxOTgyZGMyYTc0ZiIsInZlcnNpb24iOjF9.6yuSr7UmsFatwqQ-mEO4gmsEtWI05kGB5Ib2pnl05H1OiPT2uUwmqdUytUw8KTx9u1jv9q0cTF1cL-n2kPEJAA |
|
- type: rouge |
|
value: 11.4043 |
|
name: ROUGE-2 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWI5N2U2ZWI1ODM2MWUwOTIzYTAzNmRhNDA2OWEzZWRjMGEzMjBmY2EwN2YyYzU1NWE0YjIyZDE3MWE0MmMxZCIsInZlcnNpb24iOjF9.wonuxbBl25TzEaHUH_E816nHJ1OSXKfkaq7eJzbLpsfeGwcDklxUSxZxRO7VBiBMaY3Qttf9ywmEIPp40HnpBA |
|
- type: rouge |
|
value: 19.1813 |
|
name: ROUGE-L |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjU1NDZhN2NkMzZiZGJkODE4NDZiYjViOTZkNGMyNDlkNjBlZmFjYzU1N2IzMjFjYjY1MDU1Zjk2MzA0M2U4NyIsInZlcnNpb24iOjF9.bTCRzv3J9NiCh4aV23tAWGTvrdQCv_RS40zGwC4AJXtGS40cY7tJHYwBf9U9_rCetDBxqfjJpdaUbCAOglxLAA |
|
- type: rouge |
|
value: 35.1581 |
|
name: ROUGE-LSUM |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDNhNTUyZjE4NjYxYjIzYThmMDM2YWNhM2QwYzY1ODI2ZTE3NmNjMmVhOTAzZjZlOWQwYzc1NzU2NDNjNzIxMyIsInZlcnNpb24iOjF9.cWlSbEBgrMN5D-fV_yL9geNMyMkIItcVO3wehNJPzFi3E0v1-4q8pnX-UgjLzto8X7JLi6as2V_HtZE4-C-CDw |
|
- type: loss |
|
value: 4.654905319213867 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTc5Nzk0ODhiNWUzNTAxNzk2YzZmMjU2NDliY2UzOTYyYTdmZGEyYjI5NDNhOTE0MGUxOTgxMGVjMmNhM2UyMSIsInZlcnNpb24iOjF9.eBBAebcl3AwkrjR6a8BvoSjDfpw8LWTRFjyIFHVzspvoOKVfnO8_NB_UeR_K127OwXyoZ70Z7X_aKJOe-2kTDA |
|
- type: gen_len |
|
value: 186.2494 |
|
name: gen_len |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOWI2NjVlYjgwYWJiMjcyMDUzMzEwNDNjZTMxMDM0MjAzMzk1ZmIwY2Q1ZDQ2Y2M5NDBlMDEzYzFkNWEyNzJmNiIsInZlcnNpb24iOjF9.iZ1Iy7FuWL4GH7LS5EylVj5eZRC3L2ZsbYQapAkMNzR_VXPoMGvoM69Hp-kU7gW55tmz2V4Qxhvoz9cM8fciBA |
|
--- |
|
|
|
# Longformer Encoder-Decoder (LED) for Narrative-Esque Long Text Summarization |
|
|
|
<a href="https://colab.research.google.com/gist/pszemraj/3eba944ddc9fc9a4a1bfb21e83b57620/summarization-token-batching.ipynb"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
|
|
A fine-tuned version of [allenai/led-large-16384](https://huggingface.co/allenai/led-large-16384) on the `BookSum` dataset. |
|
|
|
Goal: a model that can generalize well and is useful in summarizing long text in academic and daily usage. The result works well on lots of text and can handle 16384 tokens/batch (_if you have the GPU memory to handle that_) |
|
|
|
- See the Colab demo linked above or try the [demo on Spaces](https://huggingface.co/spaces/pszemraj/summarize-long-text) |
|
|
|
|
|
> Note: the API is set to generate a max of 64 tokens for runtime reasons, so the summaries may be truncated (depending on the length of input text). For best results use python as below. |
|
|
|
--- |
|
|
|
# Usage - Basic |
|
|
|
- use `encoder_no_repeat_ngram_size=3` when calling the pipeline object to improve summary quality. |
|
- this forces the model to use new vocabulary and create an abstractive summary, otherwise it may compile the best _extractive_ summary from the input provided. |
|
|
|
Load the model into a pipeline object: |
|
|
|
```python |
|
import torch |
|
from transformers import pipeline |
|
|
|
hf_name = 'pszemraj/led-large-book-summary' |
|
|
|
summarizer = pipeline( |
|
"summarization", |
|
hf_name, |
|
device=0 if torch.cuda.is_available() else -1, |
|
) |
|
``` |
|
|
|
- put words into the pipeline object: |
|
|
|
```python |
|
wall_of_text = "your words here" |
|
|
|
result = summarizer( |
|
wall_of_text, |
|
min_length=16, |
|
max_length=256, |
|
no_repeat_ngram_size=3, |
|
encoder_no_repeat_ngram_size=3, |
|
repetition_penalty=3.5, |
|
num_beams=4, |
|
early_stopping=True, |
|
) |
|
``` |
|
|
|
|
|
**Important:** To generate the best quality summaries, you should use the global attention mask when decoding, as demonstrated in [this community notebook here](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing), see the definition of `generate_answer(batch)`. |
|
|
|
If having computing constraints, try the base version [`pszemraj/led-base-book-summary`](https://huggingface.co/pszemraj/led-base-book-summary) |
|
- all the parameters for generation on the API here are the same as [the base model](https://huggingface.co/pszemraj/led-base-book-summary) for easy comparison between versions. |
|
|
|
## Training and evaluation data |
|
|
|
- the [booksum](https://arxiv.org/abs/2105.08209) dataset (this is what adds the `bsd-3-clause` license) |
|
- During training, the input text was the text of the `chapter`, and the output was `summary_text` |
|
- Eval results can be found [here](https://huggingface.co/datasets/autoevaluate/autoeval-staging-eval-project-kmfoda__booksum-79c1c0d8-10905463) with metrics on the sidebar. |
|
|
|
## Training procedure |
|
|
|
- Training completed on the BookSum dataset for 13 total epochs |
|
- **The final four epochs combined the training and validation sets as 'train' in an effort to increase generalization.** |
|
|
|
### Training hyperparameters |
|
|
|
#### Initial Three Epochs |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
#### In-between Epochs |
|
|
|
Unfortunately, don't have all records on-hand for middle epochs; the following should be representative: |
|
|
|
- learning_rate: 4e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 6 (in addition to prior model) |
|
|
|
#### Final Two Epochs |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2 (in addition to prior model) |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.19.2 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.2.2 |
|
- Tokenizers 0.12.1 |