|
--- |
|
license: apache-2.0 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: mistral-community/Mixtral-8x22B-v0.1 |
|
model-index: |
|
- name: qlora-out-2048-multiling |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
base_model: mistral-community/Mixtral-8x22B-v0.1 |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
trust_remote_code: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
datasets: |
|
- path: lightblue/gpt4_conversations_multilingual |
|
type: sharegpt |
|
conversation: mistral |
|
dataset_prepared_path: ./prepared_dataset_2048-multiling |
|
val_set_size: 0 |
|
output_dir: ./qlora-out-2048-multiling |
|
|
|
## You can optionally freeze the entire model and unfreeze a subset of parameters |
|
unfrozen_parameters: |
|
# - ^lm_head.weight$ |
|
# - ^model.embed_tokens.weight$[:32000] |
|
# - model.layers.2[0-9]+.block_sparse_moe.gate |
|
# - model.layers.2[0-9]+.block_sparse_moe.experts |
|
# - model.layers.3[0-9]+.block_sparse_moe.gate |
|
# - model.layers.3[0-9]+.block_sparse_moe.experts |
|
|
|
model_config: |
|
output_router_logits: true |
|
|
|
adapter: qlora |
|
lora_model_dir: |
|
|
|
sequence_len: 2048 |
|
sample_packing: true |
|
pad_to_sequence_len: true |
|
|
|
lora_r: 16 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
#lora_target_modules: |
|
# - gate |
|
# - q_proj |
|
# - k_proj |
|
# - v_proj |
|
# - o_proj |
|
# - w1 |
|
# - w2 |
|
# - w3 |
|
|
|
gradient_accumulation_steps: 2 |
|
micro_batch_size: 1 |
|
num_epochs: 1 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
use_wandb: true |
|
wandb_project: axolotl |
|
wandb_entity: peterd |
|
wandb_name: mixtral_8x22b_test |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
evals_per_epoch: 0 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 5 |
|
debug: |
|
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
``` |
|
|
|
</details><br> |
|
|
|
# qlora-out-2048-multiling |
|
|
|
This model is a fine-tuned version of [mistral-community/Mixtral-8x22B-v0.1](https://huggingface.co/mistral-community/Mixtral-8x22B-v0.1) on the None dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 8 |
|
- total_eval_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0.dev0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |