metadata
language: pt
widget:
- text: O paciente recebeu no hospital e falou com a médica
- text: >-
COMO ESQUEMA DE MEDICAÇÃO PARA ICC PRESCRITO NO ALTA, RECEBE FUROSEMIDA 40
BID, ISOSSORBIDA 40 TID, DIGOXINA 0,25 /D, CAPTOPRIL 50 TID E
ESPIRONOLACTONA 25 /D.
- text: >-
ESTAVA EM USO DE FUROSEMIDA 40 BID, DIGOXINA 0,25 /D, SINVASTATINA 40
/NOITE, CAPTOPRIL 50 TID, ISOSSORBIDA 20 TID, AAS 100 /D E ESPIRONOLACTONA
25 /D.
datasets:
- MacMorpho
POS-Tagger Bio Portuguese
We fine-tuned the BioBERTpt(all) model with the MacMorpho corpus for the Post-Tagger task, with 10 epochs, achieving a general F1-Score of 0.9818.
Metrics:
Precision Recall F1 Suport
accuracy 0.98 38320
macro avg 0.95 0.94 0.94 38320
weighted avg 0.98 0.98 0.98 38320
F1: 0.9818 Accuracy: 0.9818
Parameters:
nclasses = 27
nepochs_total = 30
nepochs_stop = 12 (stop in 12th because early stop)
batch_size = 32
batch_status = 32
learning_rate = 1e-5
early_stop = 3
max_length = 200
Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Citation
coming soon
Questions?
Please, post a Github issue on the NLP Portuguese Chunking.