metadata
library_name: setfit
tags:
- setfit
- absa
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: >-
yang bersih. Pelayanan sangat Ramah dan:Tempat nya yang bersih. Pelayanan
sangat Ramah dan makanan ny yg sangat lezat
- text: >-
Restoran dengan pelayanan yang baik di:Restoran dengan pelayanan yang baik
di kota bandung, makanan yang disajikan sesuai dengan harga dan sangat
enak. …
- text: >-
dan higienis dengan pelayanan sangat maksimal dan:Saya Makanan disini
sangat enak dan higienis dengan pelayanan sangat maksimal dan ditunjang
dengan fasilitas yang oke. Parkiran luas, tempat bersih dan nyaman. Good
- text: >-
ke sini, tempat ini makanan cepat:Saya pernah ke sini, tempat ini makanan
cepat saji yang enak bersama kalian untuk makan siang cepat saji, kamarnya
bersih, sirkulasi udaranya sempurna dan tentu saja memiliki internet
berkecepatan tinggi, sangat direkomendasikan
- text: >-
Ini tempat yang bagus untuk:Ini tempat yang bagus untuk keluarga,
sahabat..
Dan juga baik untuk tamu kita..
Tapi pelayanannya terlambat..
pipeline_tag: text-classification
inference: false
SetFit Polarity Model
This is a SetFit model that can be used for Aspect Based Sentiment Analysis (ABSA). A LogisticRegression instance is used for classification. In particular, this model is in charge of classifying aspect polarities.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
This model was trained within the context of a larger system for ABSA, which looks like so:
- Use a spaCy model to select possible aspect span candidates.
- Use a SetFit model to filter these possible aspect span candidates.
- Use this SetFit model to classify the filtered aspect span candidates.
Model Details
Model Description
- Model Type: SetFit
- Classification head: a LogisticRegression instance
- spaCy Model: id_core_news_trf
- SetFitABSA Aspect Model: pupugu02/absa-setfit-resto-aspect
- SetFitABSA Polarity Model: pupugu02/absa-setfit-resto-polarity
- Maximum Sequence Length: 8192 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
positif |
|
negatif |
|
netral |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import AbsaModel
# Download from the 🤗 Hub
model = AbsaModel.from_pretrained(
"pupugu02/absa-setfit-resto-aspect",
"pupugu02/absa-setfit-resto-polarity",
)
# Run inference
preds = model("The food was great, but the venue is just way too busy.")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 28.0911 | 62 |
Label | Training Sample Count |
---|---|
konflik | 0 |
negatif | 15 |
netral | 28 |
positif | 363 |
Training Hyperparameters
- batch_size: (128, 128)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: True
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.0
- spaCy: 3.7.4
- Transformers: 4.36.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.19.2
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}