layoutlm-funsd / README.md
pvbhanuteja's picture
End of training
8821621
|
raw
history blame
9.39 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8261
  • Answer: {'precision': 0.5727482678983834, 'recall': 0.6131025957972805, 'f1': 0.5922388059701492, 'number': 809}
  • Header: {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119}
  • Question: {'precision': 0.6384228187919463, 'recall': 0.7145539906103286, 'f1': 0.6743464776251661, 'number': 1065}
  • Overall Precision: 0.6002
  • Overall Recall: 0.6327
  • Overall F1: 0.6160
  • Overall Accuracy: 0.7523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.9264 1.0 3 1.7763 {'precision': 0.011029411764705883, 'recall': 0.022249690976514216, 'f1': 0.01474805407619828, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.09483960948396095, 'recall': 0.12769953051643193, 'f1': 0.108843537414966, 'number': 1065} 0.0483 0.0773 0.0595 0.3277
1.7361 2.0 6 1.6376 {'precision': 0.0064754856614246065, 'recall': 0.00865265760197775, 'f1': 0.007407407407407408, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.17735470941883769, 'recall': 0.16619718309859155, 'f1': 0.17159476490547748, 'number': 1065} 0.0885 0.0923 0.0904 0.3852
1.6212 3.0 9 1.5225 {'precision': 0.02002002002002002, 'recall': 0.024721878862793572, 'f1': 0.022123893805309734, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.27049180327868855, 'recall': 0.27887323943661974, 'f1': 0.27461858529819694, 'number': 1065} 0.1512 0.1591 0.1550 0.4422
1.5178 4.0 12 1.4133 {'precision': 0.05408388520971302, 'recall': 0.06056860321384425, 'f1': 0.05714285714285715, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.313953488372093, 'recall': 0.38028169014084506, 'f1': 0.34394904458598724, 'number': 1065} 0.2067 0.2278 0.2168 0.5062
1.3853 5.0 15 1.3086 {'precision': 0.08221024258760108, 'recall': 0.0754017305315204, 'f1': 0.07865892972275951, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3780202650038971, 'recall': 0.45539906103286387, 'f1': 0.4131175468483816, 'number': 1065} 0.2696 0.2740 0.2718 0.5453
1.2546 6.0 18 1.2110 {'precision': 0.1463768115942029, 'recall': 0.12484548825710753, 'f1': 0.13475650433622416, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4551282051282051, 'recall': 0.5333333333333333, 'f1': 0.49113705144833547, 'number': 1065} 0.3452 0.3357 0.3404 0.5822
1.1842 7.0 21 1.1217 {'precision': 0.2563739376770538, 'recall': 0.22373300370828184, 'f1': 0.23894389438943894, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4908512330946698, 'recall': 0.5793427230046948, 'f1': 0.5314384151593453, 'number': 1065} 0.4055 0.4004 0.4029 0.6223
1.0564 8.0 24 1.0490 {'precision': 0.364461738002594, 'recall': 0.3473423980222497, 'f1': 0.3556962025316456, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.509976057462091, 'recall': 0.6, 'f1': 0.551337359792925, 'number': 1065} 0.4523 0.4616 0.4569 0.6679
0.9865 9.0 27 0.9863 {'precision': 0.4305555555555556, 'recall': 0.4215080346106304, 'f1': 0.42598376014990635, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5528726061615321, 'recall': 0.6234741784037559, 'f1': 0.5860547219770521, 'number': 1065} 0.4978 0.5043 0.5010 0.6986
0.9281 10.0 30 0.9357 {'precision': 0.49454545454545457, 'recall': 0.5043263288009888, 'f1': 0.49938800489596086, 'number': 809} {'precision': 0.034482758620689655, 'recall': 0.008403361344537815, 'f1': 0.013513513513513513, 'number': 119} {'precision': 0.5873287671232876, 'recall': 0.644131455399061, 'f1': 0.6144200626959248, 'number': 1065} 0.5415 0.5494 0.5455 0.7197
0.8646 11.0 33 0.8968 {'precision': 0.5333333333333333, 'recall': 0.5438813349814586, 'f1': 0.5385556915544676, 'number': 809} {'precision': 0.0625, 'recall': 0.01680672268907563, 'f1': 0.026490066225165563, 'number': 119} {'precision': 0.6031746031746031, 'recall': 0.6779342723004694, 'f1': 0.6383731211317418, 'number': 1065} 0.5667 0.5840 0.5752 0.7344
0.828 12.0 36 0.8653 {'precision': 0.5617577197149644, 'recall': 0.584672435105068, 'f1': 0.5729860690490611, 'number': 809} {'precision': 0.07692307692307693, 'recall': 0.025210084033613446, 'f1': 0.0379746835443038, 'number': 119} {'precision': 0.6204013377926422, 'recall': 0.6967136150234742, 'f1': 0.6563467492260062, 'number': 1065} 0.5864 0.6111 0.5985 0.7442
0.7803 13.0 39 0.8442 {'precision': 0.5667828106852497, 'recall': 0.6032138442521632, 'f1': 0.5844311377245508, 'number': 809} {'precision': 0.07142857142857142, 'recall': 0.025210084033613446, 'f1': 0.037267080745341616, 'number': 119} {'precision': 0.6343906510851419, 'recall': 0.7136150234741784, 'f1': 0.6716747680070703, 'number': 1065} 0.5954 0.6277 0.6111 0.7504
0.771 14.0 42 0.8312 {'precision': 0.5679723502304147, 'recall': 0.6093943139678616, 'f1': 0.5879546809779368, 'number': 809} {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119} {'precision': 0.6376569037656904, 'recall': 0.7154929577464789, 'f1': 0.6743362831858407, 'number': 1065} 0.5978 0.6317 0.6143 0.7516
0.7843 15.0 45 0.8261 {'precision': 0.5727482678983834, 'recall': 0.6131025957972805, 'f1': 0.5922388059701492, 'number': 809} {'precision': 0.09302325581395349, 'recall': 0.03361344537815126, 'f1': 0.04938271604938272, 'number': 119} {'precision': 0.6384228187919463, 'recall': 0.7145539906103286, 'f1': 0.6743464776251661, 'number': 1065} 0.6002 0.6327 0.6160 0.7523

Framework versions

  • Transformers 4.22.0.dev0
  • Pytorch 1.12.1+cu116
  • Datasets 2.4.0
  • Tokenizers 0.12.1