File size: 2,408 Bytes
dd1d050 50f4bef dd1d050 50f4bef dd1d050 50f4bef dd1d050 d0c1e05 dd1d050 50f4bef dd1d050 50f4bef dd1d050 0caa589 dd1d050 50f4bef d0c1e05 dd1d050 50f4bef d0c1e05 50f4bef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-finetuned-gesture-prediction-21-classes
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-finetuned-gesture-prediction-21-classes
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0350
- Precision: 0.8324
- Recall: 0.8324
- F1: 0.8324
- Accuracy: 0.8230
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4.9033776462709114e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.8808 | 1.0 | 104 | 1.1258 | 0.7513 | 0.7513 | 0.7513 | 0.7258 |
| 0.8843 | 2.0 | 208 | 0.9338 | 0.7765 | 0.7765 | 0.7765 | 0.7578 |
| 0.5881 | 3.0 | 312 | 0.8124 | 0.8173 | 0.8173 | 0.8173 | 0.8011 |
| 0.4017 | 4.0 | 416 | 0.8831 | 0.7973 | 0.7973 | 0.7973 | 0.7848 |
| 0.2652 | 5.0 | 520 | 0.9254 | 0.8300 | 0.8300 | 0.8300 | 0.8172 |
| 0.1776 | 6.0 | 624 | 0.9221 | 0.8310 | 0.8310 | 0.8310 | 0.8180 |
| 0.1234 | 7.0 | 728 | 1.0063 | 0.8211 | 0.8211 | 0.8211 | 0.8112 |
| 0.0829 | 8.0 | 832 | 1.0132 | 0.8298 | 0.8298 | 0.8298 | 0.8201 |
| 0.0552 | 9.0 | 936 | 1.0408 | 0.8290 | 0.8290 | 0.8290 | 0.8189 |
| 0.0409 | 10.0 | 1040 | 1.0350 | 0.8324 | 0.8324 | 0.8324 | 0.8230 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|