Quan
Collection
Qwen with Vietnamese continue pretrained and SFT
•
4 items
•
Updated
axolotl version: 0.3.0
base_model: qnguyen3/quan-1.8b-1e
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: false
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: vilm/pretrained_baomoi_2023
type: completion
- path: vilm/pretrained_baomoi_2022_1
type: completion
dataset_prepared_path: ./qwen_prepared
val_set_size: 0.00
output_dir: ./qwen-1.8b-vi
sequence_len: 4096 # supports up to 8192
sample_packing: true
pad_to_sequence_len:
wandb_project: qwen-vi-pt
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003
train_on_input: true
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens:
saves_per_epoch: 4
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
special_tokens:
eos_token: "<|im_end|>"
pad_token: "<|im_end|>"
This model is a fine-tuned version of qnguyen3/quan-1.8b-1e on the None dataset.
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Base model
qnguyen3/quan-1.8b-1e