Edit model card
YAML Metadata Error: Invalid YAML in README.md: can not read a block mapping entry; a multiline key may not be an implicit key (6:8) 3 | - common_voice #TODO: remove if you did ... 4 | - TODO: add more datasets if you have u ... 5 | dataset name as the one found [here](ht ... 6 | metrics: ------------^ 7 | - wer 8 | - cer (You can use a tool like http://www.yamllint.com/ to check it)

Wav2Vec2-Large-XLSR-53-Japanese

Fine-tuned facebook/wav2vec2-large-xlsr-53 on Japanese using the Common Voice, ... and ... dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz.

Usage

The model can be used directly (without a language model) as follows:

import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")

processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")

resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, dim=-1)

print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])

Evaluation

The model can be evaluated as follows on the Japanese test data of Common Voice.

import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model.to("cuda")

chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'  # TODO: adapt this list to include all special characters you removed from the data
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
    batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = resampler(speech_array).squeeze().numpy()
    return batch

test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
    inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)

    with torch.no_grad():
        logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits

    pred_ids = torch.argmax(logits, dim=-1)
    batch["pred_strings"] = processor.batch_decode(pred_ids)
    return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)

print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))

Test Result: 70.18 %

Training

The Common Voice train, validation, and ... datasets were used for training as well as ... and ...

The script used for training can be found here

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.