metadata
language:
- ru
tags:
- causal-lm
- text-generation
license:
- apache-2.0
inference: false
widget:
- text: Как обрести просветление?<s>
example_title: Википедия
RuGPT3Medium-tathagata
Model description
This is the model for text generation for Russian based on rugpt3medium_based_on_gpt2.
Intended uses & limitations
Тhis model was trained and run to generate text on RTX 3080
How to use
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
DEVICE = torch.device("cuda:0")
model_name_or_path = "radm/rugpt3medium-tathagata"
tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/rugpt3medium_based_on_gpt2")
model = GPT2LMHeadModel.from_pretrained(model_name_or_path).to(DEVICE)
text = "В чем смысл жизни?\n"
input_ids = tokenizer.encode(text, return_tensors="pt").to(DEVICE)
model.eval()
with torch.no_grad():
out = model.generate(input_ids,
do_sample=True,
num_beams=4,
temperature=1.1,
top_p=0.9,
top_k=50,
max_length=250,
min_length=50,
early_stopping=True,
no_repeat_ngram_size=2
)
generated_text = list(map(tokenizer.decode, out))[0]
print()
print(generated_text)
Dataset
Dataset based on summaries of major Buddhist, Hindu and Advaita texts such as:
- Diamond Sutra
- Lankavatara Sutra
- Sri Nisargadatta Maharaj quotes
- Quotes from the Bhagavad Gita
Dataset link: tathagata