metadata
language:
- ar
license: apache-2.0
base_model: tarteel-ai/whisper-base-ar-quran
tags:
- generated_from_trainer
datasets:
- zolfa
metrics:
- wer
model-index:
- name: Whisper-raghadomar
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Zolfa Dataset
type: zolfa
args: 'config: ar, split: test'
metrics:
- name: Wer
type: wer
value: 10.344827586206897
Whisper-raghadomar
This model is a fine-tuned version of tarteel-ai/whisper-base-ar-quran on the Zolfa Dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.0325
- Wer: 10.3448
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0002 | 1.0 | 21 | 0.0317 | 10.3448 |
0.0002 | 2.0 | 42 | 0.0287 | 10.3448 |
0.0001 | 3.0 | 63 | 0.0293 | 10.3448 |
0.0002 | 4.0 | 84 | 0.0298 | 10.3448 |
0.0002 | 5.0 | 105 | 0.0281 | 10.3448 |
0.0002 | 6.0 | 126 | 0.0308 | 10.3448 |
0.0002 | 7.0 | 147 | 0.0262 | 10.3448 |
0.0008 | 8.0 | 168 | 0.0341 | 10.3448 |
0.0002 | 9.0 | 189 | 0.0223 | 3.4483 |
0.0003 | 10.0 | 210 | 0.0411 | 10.3448 |
0.0002 | 11.0 | 231 | 0.0357 | 10.3448 |
0.0003 | 12.0 | 252 | 0.0349 | 10.3448 |
0.0001 | 13.0 | 273 | 0.0429 | 10.3448 |
0.0003 | 14.0 | 294 | 0.0311 | 10.3448 |
0.0003 | 15.0 | 315 | 0.0372 | 10.3448 |
0.0002 | 16.0 | 336 | 0.0329 | 10.3448 |
0.0002 | 17.0 | 357 | 0.0390 | 10.3448 |
0.0004 | 18.0 | 378 | 0.0333 | 10.3448 |
0.0002 | 19.0 | 399 | 0.0450 | 10.3448 |
0.0003 | 20.0 | 420 | 0.0384 | 10.3448 |
0.0002 | 21.0 | 441 | 0.0366 | 10.3448 |
0.0002 | 22.0 | 462 | 0.0360 | 10.3448 |
0.0001 | 23.0 | 483 | 0.0441 | 10.3448 |
0.0006 | 23.8095 | 500 | 0.0325 | 10.3448 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1