Adam-NER-Model / README.md
Hyper Hustle
Upload tokenizer
9c87b6f verified
|
raw
history blame
1.72 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: dslim/bert-large-NER
model-index:
  - name: bert-finetuned-ner-adam
    results: []

bert-finetuned-ner-adam

This model is a fine-tuned version of dslim/bert-large-NER on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.8340
  • Recall: 0.8131
  • F1: 0.8234
  • Accuracy: 0.9216

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1744 1.0 893 nan 0.8276 0.8115 0.8195 0.9205
0.128 2.0 1786 nan 0.8404 0.8256 0.8329 0.9238
0.0768 3.0 2679 nan 0.8340 0.8131 0.8234 0.9216

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2