See axolotl config
axolotl version: 0.4.0
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
# datasets:
# - path: mhenrichsen/alpaca_2k_test
# type: alpaca
# dataset_prepared_path:
# val_set_size: 0.05
datasets:
- path: /home/ubuntu/Project_Files/Finetune/Data/json_files/combined_sentences.json
type: completion
ds_type: json
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./qlora-out_2
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 2
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 10
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
qlora-out_2
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.7065 | 0.0 | 1 | 3.7244 |
0.6608 | 0.1 | 95 | 0.5627 |
0.6181 | 0.2 | 190 | 0.5419 |
0.6037 | 0.3 | 285 | 0.5333 |
0.5919 | 0.4 | 380 | 0.5290 |
0.5845 | 0.5 | 475 | 0.5295 |
0.5779 | 0.6 | 570 | 0.5274 |
0.5754 | 0.7 | 665 | 0.5292 |
0.5724 | 0.8 | 760 | 0.5300 |
0.5702 | 0.9 | 855 | 0.5256 |
0.5662 | 1.0 | 950 | 0.5284 |
0.5665 | 1.09 | 1045 | 0.5313 |
0.5643 | 1.19 | 1140 | 0.5325 |
0.5599 | 1.29 | 1235 | 0.5291 |
0.5607 | 1.39 | 1330 | 0.5318 |
0.5584 | 1.49 | 1425 | 0.5323 |
0.5574 | 1.59 | 1520 | 0.5324 |
0.5568 | 1.69 | 1615 | 0.5329 |
0.5586 | 1.8 | 1710 | 0.5346 |
0.5572 | 1.9 | 1805 | 0.5346 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 0
Model tree for rajeev-dw9/med_llama
Base model
NousResearch/Llama-2-7b-hf