Edit model card

mit-b0-finetuned-sidewalk-semantic

This model is a fine-tuned version of nvidia/mit-b0 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3201
  • Mean Iou: 0.3806
  • Mean Accuracy: 0.4846
  • Overall Accuracy: 0.6943
  • Accuracy Background: nan
  • Accuracy Hat: 0.0
  • Accuracy Hair: 0.8309
  • Accuracy Sunglasses: 0.0
  • Accuracy Upper-clothes: 0.8803
  • Accuracy Skirt: 0.5781
  • Accuracy Pants: 0.8338
  • Accuracy Dress: 0.4711
  • Accuracy Belt: 0.0
  • Accuracy Left-shoe: 0.1599
  • Accuracy Right-shoe: 0.3381
  • Accuracy Face: 0.8563
  • Accuracy Left-leg: 0.7194
  • Accuracy Right-leg: 0.7205
  • Accuracy Left-arm: 0.6508
  • Accuracy Right-arm: 0.6578
  • Accuracy Bag: 0.5406
  • Accuracy Scarf: 0.0
  • Iou Background: 0.0
  • Iou Hat: 0.0
  • Iou Hair: 0.7122
  • Iou Sunglasses: 0.0
  • Iou Upper-clothes: 0.6504
  • Iou Skirt: 0.4790
  • Iou Pants: 0.6587
  • Iou Dress: 0.3859
  • Iou Belt: 0.0
  • Iou Left-shoe: 0.1507
  • Iou Right-shoe: 0.2691
  • Iou Face: 0.7173
  • Iou Left-leg: 0.5748
  • Iou Right-leg: 0.5947
  • Iou Left-arm: 0.5816
  • Iou Right-arm: 0.5871
  • Iou Bag: 0.4893
  • Iou Scarf: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Hat Accuracy Hair Accuracy Sunglasses Accuracy Upper-clothes Accuracy Skirt Accuracy Pants Accuracy Dress Accuracy Belt Accuracy Left-shoe Accuracy Right-shoe Accuracy Face Accuracy Left-leg Accuracy Right-leg Accuracy Left-arm Accuracy Right-arm Accuracy Bag Accuracy Scarf Iou Background Iou Hat Iou Hair Iou Sunglasses Iou Upper-clothes Iou Skirt Iou Pants Iou Dress Iou Belt Iou Left-shoe Iou Right-shoe Iou Face Iou Left-leg Iou Right-leg Iou Left-arm Iou Right-arm Iou Bag Iou Scarf
1.5584 1.0 100 1.4751 0.1357 0.2382 0.4526 nan 0.0 0.8771 0.0 0.8883 0.0443 0.7221 0.0035 0.0 0.0187 0.0055 0.2572 0.5884 0.5612 0.0822 0.0013 0.0 0.0 0.0 0.0 0.5636 0.0 0.3813 0.0433 0.3814 0.0035 0.0 0.0182 0.0055 0.2523 0.3602 0.3582 0.0746 0.0013 0.0 0.0
1.1073 2.0 200 1.0997 0.2194 0.3308 0.5583 nan 0.0 0.9122 0.0 0.8933 0.5007 0.6982 0.1416 0.0 0.0076 0.0436 0.7573 0.6194 0.7115 0.2770 0.0608 0.0012 0.0 0.0 0.0 0.6610 0.0 0.4693 0.3429 0.5229 0.1246 0.0 0.0076 0.0416 0.6491 0.4038 0.4308 0.2338 0.0605 0.0012 0.0
0.805 3.0 300 0.7604 0.2466 0.3515 0.5861 nan 0.0 0.8500 0.0 0.8839 0.4934 0.8517 0.2381 0.0 0.0038 0.0406 0.8209 0.5776 0.7025 0.2485 0.2341 0.0298 0.0 0.0 0.0 0.6900 0.0 0.5378 0.3542 0.5424 0.2035 0.0 0.0038 0.0391 0.6827 0.4027 0.4848 0.2384 0.2289 0.0296 0.0
0.604 4.0 400 0.5498 0.2906 0.3944 0.6189 nan 0.0 0.8108 0.0 0.8788 0.6810 0.7835 0.2571 0.0 0.0016 0.1009 0.8612 0.6496 0.6929 0.4317 0.4043 0.1522 0.0 0.0 0.0 0.6910 0.0 0.5894 0.4338 0.6222 0.2234 0.0 0.0016 0.0918 0.6875 0.4402 0.5096 0.4032 0.3877 0.1492 0.0
0.4334 5.0 500 0.4440 0.3219 0.4196 0.6428 nan 0.0 0.8265 0.0 0.8612 0.4725 0.8254 0.4861 0.0 0.0033 0.1673 0.8410 0.6689 0.6548 0.5207 0.5088 0.2962 0.0 0.0 0.0 0.6959 0.0 0.6233 0.3809 0.6130 0.3510 0.0 0.0033 0.1437 0.7028 0.4987 0.5323 0.4820 0.4809 0.2858 0.0
0.4213 6.0 600 0.3817 0.3491 0.4549 0.6658 nan 0.0 0.8247 0.0 0.8762 0.7055 0.7855 0.3145 0.0 0.0273 0.2536 0.8611 0.6931 0.7257 0.6254 0.6281 0.4132 0.0 0.0 0.0 0.7044 0.0 0.6379 0.4727 0.6504 0.2752 0.0 0.0272 0.2056 0.7066 0.5298 0.5651 0.5557 0.5634 0.3902 0.0
0.3325 7.0 700 0.3484 0.3690 0.4758 0.6840 nan 0.0 0.8352 0.0 0.8333 0.6651 0.8321 0.4643 0.0 0.0780 0.3248 0.8554 0.6926 0.7224 0.6461 0.6486 0.4906 0.0 0.0 0.0 0.7079 0.0 0.6573 0.4848 0.6432 0.3743 0.0 0.0765 0.2516 0.7128 0.5528 0.5816 0.5693 0.5773 0.4521 0.0
0.2556 8.0 800 0.3384 0.3795 0.4845 0.6971 nan 0.0 0.8404 0.0 0.8723 0.6558 0.8311 0.4614 0.0 0.1270 0.3250 0.8533 0.6978 0.7209 0.6525 0.6619 0.5364 0.0 0.0 0.0 0.7130 0.0 0.6572 0.5012 0.6634 0.3790 0.0 0.1220 0.2599 0.7153 0.5627 0.5908 0.5849 0.5933 0.4873 0.0
0.3337 9.0 900 0.3201 0.3806 0.4846 0.6943 nan 0.0 0.8309 0.0 0.8803 0.5781 0.8338 0.4711 0.0 0.1599 0.3381 0.8563 0.7194 0.7205 0.6508 0.6578 0.5406 0.0 0.0 0.0 0.7122 0.0 0.6504 0.4790 0.6587 0.3859 0.0 0.1507 0.2691 0.7173 0.5748 0.5947 0.5816 0.5871 0.4893 0.0
0.2843 10.0 1000 0.3204 0.3879 0.4943 0.7036 nan 0.0 0.8304 0.0 0.8535 0.6956 0.8303 0.4990 0.0 0.1708 0.3445 0.8594 0.7149 0.7322 0.6598 0.6786 0.5344 0.0 0.0 0.0 0.7126 0.0 0.6681 0.5240 0.6700 0.4029 0.0 0.1600 0.2739 0.7169 0.5757 0.6008 0.5868 0.6012 0.4902 0.0

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for raks87/mit-b0-finetuned-sidewalk-semantic

Base model

nvidia/mit-b0
Finetuned
(319)
this model