metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.9295349495330629
- name: Recall
type: recall
value: 0.966362655683044
- name: F1
type: f1
value: 0.9475911145302433
- name: Accuracy
type: accuracy
value: 0.9731129864041257
bert-base-uncased-finetuned-ner
This model is a fine-tuned version of bert-base-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:
- Loss: 0.1050
- Precision: 0.9295
- Recall: 0.9664
- F1: 0.9476
- Accuracy: 0.9731
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.4544 | 1.0 | 612 | 0.1204 | 0.9242 | 0.9569 | 0.9403 | 0.9698 |
0.146 | 2.0 | 1224 | 0.1050 | 0.9295 | 0.9664 | 0.9476 | 0.9731 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1