raulgdp's picture
End of training
59d5ba6 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - biobert_json
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: biobert_json
          type: biobert_json
          config: Biobert_json
          split: validation
          args: Biobert_json
        metrics:
          - name: Precision
            type: precision
            value: 0.9295349495330629
          - name: Recall
            type: recall
            value: 0.966362655683044
          - name: F1
            type: f1
            value: 0.9475911145302433
          - name: Accuracy
            type: accuracy
            value: 0.9731129864041257

bert-base-uncased-finetuned-ner

This model is a fine-tuned version of bert-base-uncased on the biobert_json dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1050
  • Precision: 0.9295
  • Recall: 0.9664
  • F1: 0.9476
  • Accuracy: 0.9731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.4544 1.0 612 0.1204 0.9242 0.9569 0.9403 0.9698
0.146 2.0 1224 0.1050 0.9295 0.9664 0.9476 0.9731

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1