metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9276174773289365
- name: Recall
type: recall
value: 0.9468192527768429
- name: F1
type: f1
value: 0.9371200133255602
- name: Accuracy
type: accuracy
value: 0.9857979631482898
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0566
- Precision: 0.9276
- Recall: 0.9468
- F1: 0.9371
- Accuracy: 0.9858
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2173 | 1.0 | 878 | 0.0741 | 0.8992 | 0.9281 | 0.9135 | 0.9803 |
0.0449 | 2.0 | 1756 | 0.0580 | 0.9153 | 0.9398 | 0.9273 | 0.9844 |
0.0268 | 3.0 | 2634 | 0.0566 | 0.9276 | 0.9468 | 0.9371 | 0.9858 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3