bert-finetuned-ner / README.md
raulgdp's picture
Update README.md
d73c78c verified
|
raw
history blame
1.73 kB
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results: []
datasets:
  - tner/conll2003

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0592
  • Precision: 0.9332
  • Recall: 0.9497
  • F1: 0.9414
  • Accuracy: 0.9862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0779 1.0 1756 0.0688 0.9155 0.9371 0.9261 0.9824
0.0401 2.0 3512 0.0550 0.9328 0.9483 0.9405 0.9860
0.0267 3.0 5268 0.0592 0.9332 0.9497 0.9414 0.9862

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.18.0
  • Tokenizers 0.13.3