raulgdp's picture
End of training
39f8b23 verified
|
raw
history blame
2.2 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2002
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-uncased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2002
          type: conll2002
          config: es
          split: validation
          args: es
        metrics:
          - name: Precision
            type: precision
            value: 0.6381977967570244
          - name: Recall
            type: recall
            value: 0.621055167429535
          - name: F1
            type: f1
            value: 0.6295097979366338
          - name: Accuracy
            type: accuracy
            value: 0.9309591653454259

distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on the conll2002 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2431
  • Precision: 0.6382
  • Recall: 0.6211
  • F1: 0.6295
  • Accuracy: 0.9310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3539 1.0 521 0.2735 0.5837 0.5829 0.5833 0.9218
0.207 2.0 1042 0.2431 0.6382 0.6211 0.6295 0.9310

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0+cpu
  • Datasets 3.0.1
  • Tokenizers 0.20.0