whisper-small-es-cl / README.md
rcastrovexler's picture
End of training
e957952 verified
metadata
library_name: transformers
language:
  - es
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - ylacombe/google-chilean-spanish
metrics:
  - wer
model-index:
  - name: Whisper Small ES-CL - Roberto Castro-Vexler
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: OpenSLR Chilean Spanish
          type: ylacombe/google-chilean-spanish
          args: 'config: es-cl, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 5.930960948953752

Whisper Small ES-CL - Roberto Castro-Vexler

This model is a fine-tuned version of openai/whisper-small on the OpenSLR Chilean Spanish dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1552
  • Wer: 5.9310

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0038 8.6207 1000 0.1381 6.1975
0.0002 17.2414 2000 0.1466 5.8510
0.0001 25.8621 3000 0.1528 5.9709
0.0001 34.4828 4000 0.1552 5.9310

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1