dit_base
This model is a fine-tuned version of microsoft/dit-base on the davanstrien/leicester_loaded_annotations dataset. It achieves the following results on the evaluation set:
- Loss: 0.4527
- Accuracy: 0.8190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.89 | 6 | 1.7452 | 0.4095 |
1.8958 | 1.89 | 12 | 1.6185 | 0.4286 |
1.8958 | 2.89 | 18 | 1.4731 | 0.4857 |
1.8466 | 3.89 | 24 | 1.3459 | 0.5524 |
1.445 | 4.89 | 30 | 1.1766 | 0.5810 |
1.445 | 5.89 | 36 | 1.0902 | 0.6381 |
1.2077 | 6.89 | 42 | 0.9331 | 0.6762 |
1.2077 | 7.89 | 48 | 0.8431 | 0.6762 |
1.0254 | 8.89 | 54 | 0.8657 | 0.6857 |
0.8275 | 9.89 | 60 | 0.6801 | 0.7429 |
0.8275 | 10.89 | 66 | 0.6699 | 0.7810 |
0.8063 | 11.89 | 72 | 0.6296 | 0.7524 |
0.8063 | 12.89 | 78 | 0.5498 | 0.7905 |
0.7127 | 13.89 | 84 | 0.4974 | 0.8381 |
0.6356 | 14.89 | 90 | 0.6715 | 0.7619 |
0.6356 | 15.89 | 96 | 0.4602 | 0.8095 |
0.6438 | 16.89 | 102 | 0.4886 | 0.8095 |
0.6438 | 17.89 | 108 | 0.4332 | 0.8 |
0.5329 | 18.89 | 114 | 0.4197 | 0.8095 |
0.4932 | 19.89 | 120 | 0.4168 | 0.8190 |
0.4932 | 20.89 | 126 | 0.4691 | 0.8 |
0.4861 | 21.89 | 132 | 0.4263 | 0.8476 |
0.4861 | 22.89 | 138 | 0.4464 | 0.8190 |
0.4935 | 23.89 | 144 | 0.4857 | 0.7905 |
0.433 | 24.89 | 150 | 0.4873 | 0.7810 |
0.433 | 25.89 | 156 | 0.4641 | 0.8095 |
0.4289 | 26.89 | 162 | 0.5316 | 0.8 |
0.4289 | 27.89 | 168 | 0.3389 | 0.8571 |
0.4204 | 28.89 | 174 | 0.4272 | 0.8 |
0.3668 | 29.89 | 180 | 0.3493 | 0.8667 |
0.3668 | 30.89 | 186 | 0.3861 | 0.8571 |
0.4101 | 31.89 | 192 | 0.4216 | 0.8381 |
0.4101 | 32.89 | 198 | 0.4258 | 0.8190 |
0.3614 | 33.89 | 204 | 0.4409 | 0.8571 |
0.3267 | 34.89 | 210 | 0.4475 | 0.8190 |
0.3267 | 35.89 | 216 | 0.4316 | 0.8190 |
0.3423 | 36.89 | 222 | 0.4095 | 0.8381 |
0.3423 | 37.89 | 228 | 0.4671 | 0.8286 |
0.3325 | 38.89 | 234 | 0.3994 | 0.8286 |
0.3326 | 39.89 | 240 | 0.5004 | 0.8190 |
0.3326 | 40.89 | 246 | 0.4103 | 0.8381 |
0.2964 | 41.89 | 252 | 0.4469 | 0.8286 |
0.2964 | 42.89 | 258 | 0.4774 | 0.8286 |
0.3435 | 43.89 | 264 | 0.3843 | 0.8381 |
0.3146 | 44.89 | 270 | 0.3710 | 0.8667 |
0.3146 | 45.89 | 276 | 0.3392 | 0.8667 |
0.3168 | 46.89 | 282 | 0.3597 | 0.8667 |
0.3168 | 47.89 | 288 | 0.4143 | 0.8381 |
0.3081 | 48.89 | 294 | 0.3579 | 0.8571 |
0.3103 | 49.89 | 300 | 0.4527 | 0.8190 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.1
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.