Out repository flan-alpaca-lora contains the details to train flan-t5 with Alpaca instructions and low-rank adaptation.
This model is trained with alpaca-gpt4 instructions data.
Usage:
import transformers
from peft import PeftModel
model_name = "google/flan-t5-xl"; peft_model_id = "reasonwang/flan-alpaca-gpt4-lora-xl"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_name)
peft_model = PeftModel.from_pretrained(base_model, peft_model_id)
inputs = tokenizer("If you are the president of a developing country, what you will do to make your country better?", return_tensors="pt")
outputs = peft_model.generate(**inputs, max_length=256, do_sample=True)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))